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Abstract 

Technology to explore other planets is continuously evolving, driven by engineers' relentless 

curiosity about what humanity's potential will be beyond Earth. Mars stands as NASA’s key 

focus for human exploration due to its potential to have once supported life and its significance 

in deepening our understanding of Earth’s history, and perhaps even our future. NASAs initial 

Mars missions, including the Viking program, provided fundamental knowledge for 

understanding how to approach future man missions to the red planet. With plans to land on 

Mars by the 2030s [1], advancements in rover technology will play a crucial role in supporting 

humanity’s efforts to explore and survive on Martian soil. 

 To support human missions beyond Earth, our goal is to design an autonomous rover 

specifically for ensuring the reliability and efficiency of solar energy infrastructure in extreme 

extraterrestrial environments. Dust accumulation on solar panels poses a significant threat to 

sustained power generation, potentially compromising mission success. Our rover autonomously 

navigates to designated solar panels based on crew commands, efficiently removing dust and 

debris to restore optimal energy absorption. Once cleaning is complete, the rover logs 

maintenance data, including timestamps and images, before returning to its docking station for 

recharging. By streamlining solar panel upkeep and minimizing manual intervention, our system 

enhances long-term exploration efforts and supports sustained human presence on Mars and 

beyond. 

 

 

 

 

 

 

 

 

 

 



 ii  
 

Acknowledgements 

We would like to extend our gratitude to everyone who has contributed to the success of the 

Astraeus project. First and foremost, we would like to sincerely thank Dr. Hall, our advisor, for 

her invaluable guidance and mentorship throughout this project. Her support and insights have 

been instrumental in shaping our work.  

We are grateful to Dr. Carbone for his expertise in planning our AI components and 

providing valuable insights into the project’s scope, and to Dr. Britt for supplying Martian soil 

through the UCF Exolith Lab for our testing.  

A big thank you to Will Goodman for his continued support with ordering components 

through Valencia College and supporting our ambitions for this project. Thank you to Thomas 

Dillen for providing us with access to the Innovation Lab for prototyping and testing.  

Finally, we would like to extend our gratitude to the judges who have taken the time to 

evaluate our project. Their feedback and insights are invaluable in refining our work and pushing 

us to achieve excellence.  

This project would not have been possible without the contributions, guidance, and 

encouragement of these individuals, and we are deeply thankful for their support. 

 

 

 

 

 

 

 

 

 

 

 

  



 iii  
 

Table of Contents 

Abstract ....................................................................................................................................... i 

Acknowledgements ...................................................................................................................... ii 

Table of Contents ........................................................................................................................ iii 

List of Tables .............................................................................................................................. xi 

 

Chapter 1 Introduction ............................................................................................................... 1 

1.1 Project Overview ............................................................................................................... 2 

1.2 Problem Definition ............................................................................................................. 2 

1.3 Project Objectives .............................................................................................................. 3 

1.4 Motivation ......................................................................................................................... 4 

1.5 Project Requirements & Specifications ............................................................................... 5 

1.5.1 Engineering Requirements ........................................................................................................... 5 

1.5.2 Engineering Specifications .......................................................................................................... 7 

1.6 System Block Diagrams .....................................................................................................10 

1.6.1 Full System Architecture ........................................................................................................... 10 

1.6.2 Power Distribution ..................................................................................................................... 11 

1.6.3 Electromechanical Subsystem .................................................................................................... 12 

1.6.4 Vision & Sensor Integration ...................................................................................................... 12 

1.7 Limitations .......................................................................................................................13 

1.7.1 Scale and Functionality .............................................................................................................. 13 

1.7.2 Component Selection ................................................................................................................. 13 

1.7.3 Autonomy & AI Capabilities ..................................................................................................... 14 

1.7.4 Panel Orientation Constraint ...................................................................................................... 14 

1.7.5 Testing Environment .................................................................................................................. 14 

1.7.6 Power and Runtime Constraints ................................................................................................. 14 

1.7.7 Communication .......................................................................................................................... 14 

1.8 Comparison of Existing Products .......................................................................................15 



 iv  
 

1.9 Report Structure ...............................................................................................................18 

 

Chapter 2 Background Research ................................................................................................20 

2.1 Rocker-Bogie Suspension System .......................................................................................21 

2.1.1 3D Printing for Rocker Bogie Components ............................................................................... 21 

2.1.2 Implementing Rocker-Bogie ...................................................................................................... 23 

2.2 Martian Regolith Research ................................................................................................24 

2.3 Drive System & Motor Control ..........................................................................................25 

2.3.1 Drive System .............................................................................................................................. 25 

2.2.2 Motor Control ............................................................................................................................ 26 

2.3 Robotic Arm & Cleaning Mechanism ................................................................................27 

2.3.1 Arm Control and Integration ...................................................................................................... 28 

2.3.2 Cleaning Testing ........................................................................................................................ 29 

2.4 Sensors & Vision ...............................................................................................................31 

2.4.1 Proximity Sensors ...................................................................................................................... 31 

2.4.2 AI-Based Vision with HuskyLens ............................................................................................. 32 

2.5 Control Platform and Software..........................................................................................33 

2.5.1 Programming Languages and Software Architecture ................................................................ 34 

2.5.2 Software Libraries and Dependencies ........................................................................................ 35 

2.6 Navigations & Task Execution Algorithms .........................................................................36 

2.6.1 Main System Flow ..................................................................................................................... 36 

2.6.2 Manual Navigation Logic .......................................................................................................... 37 

2.6.3 Autonomous Navigation Logic .................................................................................................. 39 

2.6.4 Panel 1 Cleaning Subroutine ...................................................................................................... 41 

2.6.5 Panel 2 Cleaning Subroutine ...................................................................................................... 43 

2.6.6 Full Cleaning Routine ................................................................................................................ 45 

2.7 Power Budget ...................................................................................................................47 

 



 v  
 

Chapter 3 Contributions ............................................................................................................50 

3.1 Main Chassis Contributions ..............................................................................................51 

3.1.1 Structural framework and layout ................................................................................................ 51 

3.1.2 Structural Design Features ......................................................................................................... 52 

3.1.3 Assembly and Dimensional Refinements .................................................................................. 55 

3.2 Cleaning Arm Contributions .............................................................................................55 

3.2.1 CAD Design & Mechanical Layout ........................................................................................... 56 

3.2.1 Initial Servo Selection and Justification ..................................................................................... 57 

3.2.3 Power Considerations ................................................................................................................ 58 

3.2.4 Robotic Arm CAD Design ......................................................................................................... 59 

3.2.5 Brush Cleaning Mechanism CAD Design ................................................................................. 61 

3.2.6 Arm & Electrical Integration ..................................................................................................... 62 

3.2.7 Servo Programing with Maestro Control Center ....................................................................... 65 

3.3 Rocker-Bogie Contributions ..............................................................................................66 

3.3.1 Rocker-Bogie Design ................................................................................................................. 67 

3.4 Software Development ......................................................................................................70 

3.4.1 Software Architecture Overview................................................................................................ 70 

3.4.2 Main Execution and Control Logic ............................................................................................ 71 

3.4.3 Manual Control System ............................................................................................................. 75 

3.4.4 Autonomous Navigation and Tag Alignment ............................................................................ 78 

3.4.5 Motor and Movement Control ................................................................................................... 84 

3.4.6 Sensor Integration and Obstacle Detection ................................................................................ 87 

3.4.7 External Subsystem Control ....................................................................................................... 89 

3.4.8 Event Logging and Dashboard Interface .................................................................................... 90 

3.4.9 Safety and Fail-Safe Mechanisms .............................................................................................. 96 

3.4.10 Modular Design and Scalability ............................................................................................... 97 

 

Chapter 4 Non-Technical Issues .................................................................................................99 



 vi  
 

4.1 Project Timeline ............................................................................................................. 100 

4.1.1 Proposal Phase (Spring 2025) .................................................................................................. 100 

4.1.2 Design Phase (Summer 2025) .................................................................................................. 104 

4.2 Budget ............................................................................................................................ 107 

4.3 Environmental Aspects ................................................................................................... 112 

4.4 Health and Safety Considerations .................................................................................... 112 

4.5 Ethical Aspects ............................................................................................................... 113 

4.6 Sustainability Considerations .......................................................................................... 113 

 

Chapter 5 Conclusion............................................................................................................... 115 

5.1 Summary and Conclusion ............................................................................................... 116 

5.1.2 Robotic Arm Performance and Brush Results ......................................................................... 116 

5.1.2 Autonomous Capabilities Results ............................................................................................ 118 

5.2 Suggestions for Future Work ........................................................................................... 119 

5.2.1 Solar Panel Efficiency Monitoring........................................................................................... 120 

5.2.2 Self-Docking Charging Station ................................................................................................ 120 

 

APPENDICES ......................................................................................................................... 123 

Appendix A – Email Correspondence ...................................................................................... 124 

Appendix B – VNH5019 Datasheet ......................................................................................... 125 

Appendix C – Maestro Servo Controller User Guild .................................................................. 132 

Appendix D – Solartech SPM030P-WP-F data sheet ................................................................. 137 

Appendix E – GP2D120 Datasheet .......................................................................................... 139 

Appendix F – Raspberry Pi 3 Model B .................................................................................... 144 

Appendix G – Maestro Code Script ......................................................................................... 147 

Appendix H – Astraeus Source Code ....................................................................................... 154 

Appendix H.1 – start_all.py .............................................................................................................. 154 

Appendix H.2 – main.py ................................................................................................................... 156 



 vii  
 

Appendix H.3 – autonomy.py ........................................................................................................... 159 

Appendix H.4 – motors.py ................................................................................................................ 171 

Appendix H.5 – sharp_sensors.py ..................................................................................................... 174 

Appendix H.6 – visual_module.py ................................................................................................... 177 

Appendix H.7 – maestro_module.py ................................................................................................ 179 

Appendix H.8 – logger.py ................................................................................................................. 181 

Appendix H.9 – shared_state.py ....................................................................................................... 182 

Appendix H.10 – command_center.py.............................................................................................. 183 

Appendix H.11 – failsafe_manual.py ............................................................................................... 184 

Appendix H.12 – init_db.py .............................................................................................................. 187 

Appendix H.13 – app.py ................................................................................................................... 188 

Appendix H.14 – joystick.js .............................................................................................................. 191 

Appendix H.15 – home.html ............................................................................................................. 193 

Appendix H.16 – index.html ............................................................................................................. 195 

Appendix H.17 – autonomous.html .................................................................................................. 200 

Appendix H.18 – log_table.html ....................................................................................................... 203 

Appendix H.19 – manual.html .......................................................................................................... 205 

Appendix H.20 – mode.html ............................................................................................................. 209 

Appendix I – IEEE Code of Ethics .......................................................................................... 212 

Group Members ...................................................................................................................... 213 

 

  



 viii  
 

List of Figures 

Figure 1. Full System Block Diagram ......................................................................................... 11 

Figure 2. Power Distribution Block Diagram .............................................................................. 11 

Figure 3. Electromechanical Block Diagram ............................................................................... 12 

Figure 4. Vision & Sensor Module Block Diagram..................................................................... 13 

Figure 5. Opportunity Rover ........................................................................................................ 16 

Figure 6. Curiosity Rover Radioisotope Thermoelectric Generator ............................................ 16 

Figure 7. SolarCleano F1 ............................................................................................................. 17 

Figure 8. Rocker-bogie Suspension System Range of Contact ................................................... 21 

Figure 9. Overture PETG 1.75mm 3D Printer Filament .............................................................. 22 

Figure 10. CAD model of the rocker-bogie suspension............................................................... 23 

Figure 11. Martian Regolith ......................................................................................................... 24 

Figure 12. Geartisan DC 12V 100RPM Gear Motor ................................................................... 26 

Figure 13. VNH5019 Motor Driver Carrier ................................................................................. 26 

Figure 14. 25kg-DS3225 High-torque Digital Servo ................................................................... 27 

Figure 15. ANNIMOS 45 kg High-torque Digital Servo............................................................. 27 

Figure 16. 55g High-torque Digital Servo ................................................................................... 28 

Figure 17. N20 75:1 12V Micro Gear Motor ............................................................................... 28 

Figure 18. Mini Maestro 12-Channel USB Servo Controller ...................................................... 29 

Figure 19. Solartech SPM030P-WP-F Polycrystalline Panel ...................................................... 30 

Figure 20. Sharp GP2D120 Infrared (IR) Proximity Sensors ...................................................... 31 

Figure 21. ADS1115 16-bit analog-to-digital converter .............................................................. 32 

Figure 22. HuskyLens AI Camera ............................................................................................... 32 

Figure 23. Raspberry Pi 3 Model B ............................................................................................. 33 

Figure 24. Main Flowchart ........................................................................................................... 37 

Figure 25. Navigation Process Flowchart .................................................................................... 38 

Figure 26. Alignment Process Flowchart ..................................................................................... 40 

Figure 27. Panel 1 Cleaning Flowchart ........................................................................................ 42 

Figure 28. Panel 2 Cleaning Flowchart ........................................................................................ 44 

Figure 29. Clean All Flowchart.................................................................................................... 46 

Figure 30. Botku 12 30Ah Lithium LiFePO4 Deep Cycle Battery ............................................. 47 



 ix  
 

Figure 31. Corner Brackets on Print Plate ................................................................................... 52 

Figure 32. Main Chassis CAD Model .......................................................................................... 52 

Figure 33. Rocker-Bogie Mounting Hubs.................................................................................... 53 

Figure 34. Base Rotation Servo Mount ........................................................................................ 53 

Figure 35. Robotic Arm Baseplate & Lazy Susan Integration .................................................... 54 

Figure 36. Battery Tray Integration ............................................................................................. 54 

Figure 37. Main Chassis Assembled ............................................................................................ 55 

Figure 38.  Initial Robotic Arm CAD Model (Proposed Design) ................................................ 56 

Figure 39. Robotic Arm single-sheer joint................................................................................... 60 

Figure 40.  Revised Robotic Arm ................................................................................................ 60 

Figure 41. ECOMAID Brush Compatible for iRobot Roomba ................................................... 61 

Figure 42. Bevel Gear Mechanism CAD Model.......................................................................... 62 

Figure 43. Wrist Rotation Mechanism CAD Model .................................................................... 62 

Figure 44. 4-inch Lazy Susan ...................................................................................................... 63 

Figure 45. DC-DC Stepdown Regulator 6-40V into 1.2-36V 20A out ....................................... 63 

Figure 46. Maestro & VNH5019 Wiring ..................................................................................... 64 

Figure 47. Arm & Brush Fully Assembled .................................................................................. 64 

Figure 48. Astraeus Wheel ........................................................................................................... 67 

Figure 49. Rocker-Bogie Assembly (Right) ................................................................................ 68 

Figure 50. Full Rocker Boggie Assembly .................................................................................... 69 

Figure 51. Shared dictionary setup in start_all.py for inter-process communication .................. 72 

Figure 52. Dual-process launch for Flask and control loop in start_all.py .................................. 72 

Figure 53. Main control loop in main.py handling mode-based task delegation ......................... 73 

Figure 54. Manual command and speed retrieval from shared memory in main.py ................... 73 

Figure 55. Task check and autonomous execution trigger in main.py ........................................ 74 

Figure 56. Command access functions in command_center.py using shared memory ............... 74 

Figure 57. Route in app.py to receive manual movement commands. ........................................ 76 

Figure 58. Speed update route in app.py for manual mode. ........................................................ 76 

Figure 59. Local inclusion of nipplejs in the HTML interface. ................................................... 77 

Figure 60. JavaScript function sending movement commands to Flask. ..................................... 77 

Figure 61. Mode selection route in app.py................................................................................... 78 



 x  
 

Figure 62. main.py triggers run_autonomy() when a task is detected. ........................................ 79 

Figure 63. Detection and buffering of April Tag data in visual_module.py. ............................... 80 

Figure 64. Smoothed average output of tag data to stabilize alignment. ..................................... 81 

Figure 65. Task sequence for "panel1" in autonomy.py, showing tag detection and alignment 

steps, with fallback to manual mode if either stage fails. ............................................................. 84 

Figure 66. _set_single_motor() applies a direction and PWM value based on the requested 

speed. ............................................................................................................................................ 85 

Figure 67. Centralized drive command routing in motors.py for manual input handling. .......... 86 

Figure 68. Fine-grained motor control in autonomous tag tracking. ........................................... 87 

Figure 69. Voltage-to-distance conversion used to interpret raw Sharp sensor readings. ........... 88 

Figure 70. Exponential moving average (EMA) for smoothing noisy distance data. .................. 88 

Figure 71. Emergency stop routine triggered when a nearby object is detected. ........................ 89 

Figure 72. Function to trigger subroutine execution on the Pololu Maestro via serial command.

....................................................................................................................................................... 90 

Figure 73. Home Tab here to show the starting point of the UI. ................................................. 91 

Figure 74. Select Operation Mode screen. ................................................................................... 92 

Figure 75. Manual Mode Control Interface with Joystick after this paragraph. .......................... 92 

Figure 76. Autonomy Mode Selection Screen here. .................................................................... 93 

Figure 77. Full Log Table View (All Levels) .............................................................................. 94 

Figure 78. Warnings Filtered View.............................................................................................. 94 

Figure 79. Alerts Highlighted in Red ........................................................................................... 95 

Figure 80. Load Older Log Button, no new messages were available at the time so no “New 

Message” Pop up........................................................................................................................... 95 

Figure 81. Key-mapping dictionary in failsafe_manual.py that defines manual control input 

using standard keyboard keys. ...................................................................................................... 97 

Figure 82. Panel Section 1 Cleaned ........................................................................................... 117 

Figure 83. Panel Section 2 Cleaned ........................................................................................... 117 

 

 



 xi  
 

List of Tables 

Table 1. Robotic Arm Engineering Requirements ......................................................................... 6 

Table 2. Navigation Engineering Requirements ............................................................................ 7 

Table 3. Drive System Specifications ............................................................................................ 8 

Table 4. Cleaning Arm Specifications ........................................................................................... 9 

Table 5. Power Module Specifications ........................................................................................ 10 

Table 6. Product Comparison Table ............................................................................................. 18 

Table 7. Mineral Composition of MGS-1 .................................................................................... 24 

Table 8. Solar Panel Comparison ................................................................................................. 30 

Table 9. List of Libraries Used..................................................................................................... 35 

Table 10. Proposed Power Budget ............................................................................................... 48 

Table 11. Comprehensive Power Budget ..................................................................................... 49 

Table 12. Robotic Arm Servo Specifications ............................................................................... 57 

Table 13. Revised Robotic Arm Servo Specifications ................................................................. 57 

Table 14. Spring Timeline .......................................................................................................... 100 

Table 15. Spring Gantt Chart (Proposal Phase) ......................................................................... 102 

Table 16. Senior Design (Proposed) Gannt Chart ...................................................................... 103 

Table 17. Spring Timeline .......................................................................................................... 104 

Table 18. Spring Gantt Chart ..................................................................................................... 106 

Table 19. Contributions Table .................................................................................................... 107 

Table 20. Proposed Budget ........................................................................................................ 108 

Table 21. Final Comprehensive Budget ..................................................................................... 110 

 

 



 1  
 

Chapter 1 Introduction 
 

Introduction 

 

 

 

 

 

 

 

 

1.1 Project Overview 

1.2 Problem Definition  

1.3 Project Objectives 

1.4 Motivation  

1.5 Engineering Requirements & Specifications 

1.6 Block Diagrams 

1.7 Limitations 

1.8 Comparison of Existing Products 

1.9 Report Outline 

Summary 

In this chapter, we introduce the Astraeus project, an autonomous prototype rover 

designed to clean solar panels on Mars using a 5-axis robotic arm. The motivation for this 

design stems from the critical need to maintain solar efficiency in extraterrestrial 

environments, where dust accumulation poses a significant threat to power generation. 

This chapter defines the problem, outlines the project’s objectives, and presents the 

engineering specifications and block diagram of the system. It also compares Astraeus to 

existing solutions and describes the organization of the remainder of the report. 
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1.1 Project Overview 

Astraeus is an autonomous prototype rover developed to demonstrate the feasibility of robotic 

solar panel cleaning in conditions analogous to those found on the Martian surface. As solar 

energy remains one of the most practical and sustainable power sources for planetary missions, 

maintaining consistent panel efficiency is critical to ensuring mission success. However, on 

Mars, atmospheric dust storms and loose surface particles pose a continual threat to solar panel 

performance by reducing light absorption through fine dust accumulation. 

The Astraeus project addresses this challenge by proposing a compact, AI-guided robotic 

system capable of autonomously identifying solar panels, navigating unstructured terrain, and 

executing cleaning operations using a precision-controlled robotic arm. The system is engineered 

to operate independently, without real-time human input, enabling reliable and repeatable 

maintenance in future off-world solar farms or mission-critical infrastructure. 

Designed specifically for Earth-based testing, the prototype operates under realistic 

power, mobility, and sensing constraints. It utilizes MGS-1 Martian regolith simulant for dust-

based testing and simulates extraterrestrial terrain challenges. The chassis features a rocker-bogie 

suspension system to support traversal over uneven ground. A Raspberry Pi 3 Model B serves as 

the main control platform, integrated with a HuskyLens AI camera for visual panel recognition 

and alignment. 

All subsystems were developed with modularity and scalability in mind, enabling future 

upgrades and adaptation to more demanding mission environments. Astraeus serves not only as a 

proof-of-concept for solar panel cleaning robotics, but also as a foundation for the broader 

development of autonomous surface maintenance technologies essential for sustained human 

presence on Mars and beyond. 

1.2 Problem Definition 

As humanity prepares for long-term exploration and eventual settlement beyond Earth, the 

establishment of reliable energy infrastructure becomes essential for sustaining surface 

operations. On Mars, solar power is the most practical and scalable energy source due to its 

availability and ease of deployment. However, the Martian environment presents a major 

challenge: fine dust particles, carried by winds and storms in the planet’s low-pressure 

atmosphere, which settle on solar panels and gradually degrade their efficiency. 
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Without an effective cleaning strategy, this accumulation can severely reduce power 

output over time, leading to energy shortages that compromise critical systems such as life 

support, communications, and scientific instruments. While manual cleaning by astronauts is 

theoretically possible, it is not sustainable. It would require extensive EVA time, present 

operational risks, and divert personnel from higher-priority mission objectives. 

To address this issue, the Astraeus project was conceived as a robotic solution for 

autonomous solar panel cleaning on Mars. Astraeus is a mobile rover equipped with onboard 

navigation, panel detection capabilities, and a precision-controlled dual-brush cleaning 

mechanism. It can autonomously locate solar panels, align itself using onboard sensors and 

vision systems, and remove surface dust without human intervention. 

By automating this critical maintenance task, Astraeus significantly improves the 

reliability and longevity of solar energy systems in extraterrestrial environments. This not only 

reduces the risk to mission personnel but also supports the scalability of solar infrastructure for 

future Martian habitats, research stations, and equipment deployments. 

1.3 Project Objectives 

The primary objective of Astraeus is to enhance the sustainability of long-duration Mars 

missions by maintaining the performance of solar energy infrastructure. Solar power is projected 

to be the primary energy source for off-world operations, and uninterrupted energy absorption is 

critical to sustaining life support systems, communication networks, and scientific 

instrumentation on the Martian surface. 

Astraeus addresses the operational challenge of dust accumulation on solar panels, one of 

the primary limitations of previous solar-powered Mars missions. Designed as an autonomous 

rover, Astraeus actively monitors and cleans solar arrays without requiring astronaut 

intervention. This reduces risk and workload for human crews while improving energy system 

reliability and overall mission productivity. 

The rover demonstrates autonomous cleaning functionality in an Earth-based test 

scenario using MGS-1 Martian regolith simulant and terrain conditions selected to resemble 

Martian surface challenges. Astraeus uses onboard vision systems to locate solar panels, aligns 

itself using a combination of sensor feedback and QR code positioning, and activates a 5-axis 

robotic arm to perform cleaning using dual counter-rotating soft brushes. Once cleaning is 
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complete, the rover autonomously returns to its original location. Throughout the operation, 

Astraeus functions independently, without the need for real-time external control or 

supplemental power. 

Additionally, the project integrates a robust system logging process that collects 

diagnostic data during each cleaning cycle. This data informs future optimization of panel 

maintenance strategies and supports the development of scalable robotic infrastructure for future 

human settlement. 

Astraeus is built with modularity and sustainability in mind. From its chassis and servo 

layout to its battery system and software architecture, the rover is designed to support iterative 

development and component-level upgrades. With a total system staying within budget, the 

project demonstrates that essential support systems for space infrastructure can be prototyped 

affordably, providing a foundation for future autonomous maintenance robotics on Mars. 

1.4 Motivation 

The success of planetary exploration missions depends heavily on the availability of reliable and 

sustainable power systems. Among these, solar energy has emerged as the preferred source for 

surface operations because of its accessibility, scalability, and simplicity of deployment. 

However, maintaining a consistent energy output remains a significant challenge on Mars, where 

fine dust particles regularly settle on solar panels. This buildup gradually reduces panel 

efficiency and threatens the continuity of mission operations. 

This challenge has already affected real missions. NASA’s Opportunity rover, which 

operated well beyond its expected lifespan, ultimately ceased functioning after a global dust 

storm covered its solar panels. Without a method to clean them autonomously, the rover lost 

power and was unable to recover. This event marked the end of a historic mission not because of 

mechanical failure but due to the absence of a maintenance system to sustain its energy supply. 

As missions to Mars and other planetary bodies increase in complexity and duration, the 

need for autonomous maintenance capabilities becomes increasingly important. Dependence on 

solar energy will not be viable unless systems are in place to ensure continuous performance. 

Manual servicing is often impractical or impossible due to time constraints, safety concerns, and 

the limited availability of astronaut resources. 
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The Astraeus project was developed in response to this critical need. It is based on the 

idea that autonomous robotic systems must handle routine operational tasks to support scalable 

and sustainable exploration. By addressing the specific issue of solar panel dust accumulation, 

Astraeus serves as an early demonstration of robotic infrastructure that can support future 

extraterrestrial missions. Its development is a first step toward enabling continuous surface 

operations for research, habitation, and long-term exploration beyond Earth. 

1.5 Project Requirements & Specifications 

The engineering requirements and specifications presented here serve to narrow the project’s 

scope and sharpen the focus of the Astraeus design efforts. By setting clear, measurable criteria, 

these requirements provide essential guidance and boundaries that keep the project targeted and 

manageable while ensuring alignment with its core objectives. This focused framework supports 

informed decisions in component selection and system design, leading to a well-defined and 

achievable engineering solution. 

1.5.1 Engineering Requirements 

The engineering requirements for Astraeus define the functional and performance expectations 

necessary for effective solar panel cleaning on Mars. These requirements ensure that the rover 

can efficiently navigate, clean solar panels, and log performance data while maintaining system 

reliability and energy efficiency. The requirements are categorized into two key subsystems: the 

robotic arm cleaning system and the navigation system. Each requirement is assigned a priority 

level, high for critical functions and medium for supporting capabilities, along with a 

corresponding verification method. 

 

Robotic Arm (Cleaning System) 

The robotic arm is responsible for executing the cleaning function of the Astraeus rover 

and was designed to operate autonomously with precision and control. Its performance is 

defined by specific functional and verification requirements to ensure effective dust 

removal and reliable data collection during testing. Table 1 below outlines the 

engineering requirements established for the robotic arm and its integrated cleaning 

system. 
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Table 1. Robotic Arm Engineering Requirements 

Robotic Arm (Cleaning system) 

Level Requirements (Astraeus Shall...) Verification 

High 

Utilize a variable speed cleaning brush 

with precise control over  

speed and pressure to effectively clean 

surfaces. 

Demonstrate the brush operating  

at steady speeds and document  

the cleaning effectiveness at each  

speed using controlled amounts of  

debris on the testing surface. 

Medium 

Document the cleaning of the solar panel 

by logging the data for users to analyze 

the performance of the rover. 

The System must log all data in a  

structured format, accessible  

for further analysis. 

 

Navigation Engineering Requirements 

The navigation system enables Astraeus to operate autonomously by detecting and 

avoiding obstacles, identifying solar panel locations, and returning to its origin after 

completing a cleaning cycle. This subsystem integrates sensor data and visual recognition 

to support decision-making in real time. The engineering requirements for navigation 

were developed to ensure the rover can perform these tasks reliably under simulated 

mission conditions. Table 2 outlines the specific performance expectations and 

verification methods for the navigation system. 
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Table 2. Navigation Engineering Requirements 

Navigation Engineering Requirements 

Level Requirements (Astraeus Shall...) Verification 

High 

Autonomously determine its own path 

to solar panels while avoiding 

obstacles. 

Conduct navigation test where the 

rover reaches its destination without 

collision in test trials. 

Detect larger obstacles up to 40cm 

without running into them without 

human intervention. 

Validate obstacle detection by  

testing against various obstacle  

sizes and distances. 

Recognize visual cues such as QR 

codes, distinct shapes, or colored 

markers to identify target zones. 

Position various April Tag markers for the dedicated 

panel site and base position. Run various tests where 

Astraeus must correctly identify and navigate 

towards each unique marker using its on board 

vision system. 

Medium 
Return to the starting position without 

any human intervention. 

Conduct various tests, verify Astraeus successfully 

navigates back to its start point after completing its 

cleaning task with no manual correction. 

 

1.5.2 Engineering Specifications  

The Astraeus project is designed to meet a precise set of engineering specifications that ensure 

optimal performance and reliability in its intended application. These specifications serve as the 

foundational requirements guiding the selection of components, system architecture, and overall 

design choices. The following table outlines the detailed specifications for key aspects such as 

mobility, power, sensing, and manipulation capabilities. Following this, a comprehensive 

overview of the selected parts will demonstrate how each component aligns with and fulfills 

these stringent requirements to create a cohesive and effective robotic system. 
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Table 3. Drive System Specifications 

Drive System Specifications 

Module Component 
Engineering 

Specifications 
Justification 

Electro-

Mechanical 

Module 

Motors (x6) 

- 12V DC 

- Peak Current: 15 A 

- Gearbox Output: ~100 

RPM 

- High torque output to support 

rover mobility and terrain 

traversal. 

- Geared motors reduce speed for 

increased  

torque. 

Motor Drivers 

- Rated for 12V motor 

operation. 

- Supports bidirectional 

speed control  

for 6 motors. 

- Enables independent control of 

left/right motor groups. 

- Required to safely and 

efficiently drive multiple motors 

under load. 

Control 

Module 

Microcontroller 

- Minimum 12 PWM-

capable pins 

- Supports UART, I²C 

for peripherals 

- Required for precise motor 

control and servo actuation. 

- Must support communication 

with sensors and  

AI camera. 

IR Analog 

Distance Sensor 

- Voltage: 5V 

- Current Draw: 

~30 mA 

- Range: up to 31 cm 

- Used for edge detection and 

alignment with  

solar panel. 

- Enables basic obstacle 

avoidance and correction. 

AI camera 

- Supports onboard 

object tracking via AI 

- Compatible 

UART/I²C 

- Captures and analyzes solar 

panel position for  

autonomous alignment. 

- Enables visual feedback loop 

for positioning  

system. 
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Table 4. Cleaning Arm Specifications 

Cleaning Arm 

Module Component 
Engineering 

Specifications 
Justification 

Electro-

Mechanical  

Module 

Servo 

- Torque: 25 kg 

- Voltage Range: 4.8V 

– 7.4V 

- Stall Current: ~3.5 A 

- Strong enough for base rotation. 

- Uses PMW control. 

- IP67 rated.  

Servo 

- Torque: 45 kg 

- Voltage Range: 6.0 V 

– 8.4 V 

- Stall Current: ~3.5 A 

- Strong enough for shoulder rotation. 

- Uses PMW control. 

- IP67 rated. 

 

Servo 

- Torque: 45 kg 

- Voltage Range: 6.0 V 

– 8.4 V 

- Stall Current: ~3.5 A 

- Strong enough for elbow rotation. 

- Uses PMW control. 

- IP67 rated. 

 

Servo 

- Torque: 25 kg 

- Voltage Range: 4.8V 

– 7.4V 

- Stall Current: ~3.5 A 

- Strong enough for wrist tilt. 

- Uses PMW control. 

- IP67 rated. 

 

Servo 

- Torque: 55g  

- Voltage Range: 4.8V 

– 7.4V 

- Stall Current: ~3.5 A 

- Strong enough for wrist rotation. 

- Uses PMW control. 

- IP67 rated. 

 

Micro-Metal  

Gear Motor 

- Gear Ratio: 75:1 

- Voltage Range: 3V – 

9V 

- Stall Current: ~1.6 A 

- Provide sufficient torque to rotate 

cleaning brush through dust/debris. 

- Compact size to fit within brush 

housing.  

 

Control 

Module 

Servo 

Controller 

- 6 servo channels (12-

bit resolution) 

- Logic voltage: 5V 

- Control via USB, 

UART (TTL) 

- Enables precise control of up to 6 

servos. 

- USB and UART options allow easy 

integration  

with microcontrollers or PC. 

- Built-in scripting for autonomous 

sequences  

without a host controller. 
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Table 5. Power Module Specifications 

Power Module Specifications 

Module Component 
Engineering 

Specifications 
Justification 

Power 

Module 

Drive System 

Battery 
12V 30Ah 

- Provides sufficient current and 

capacity to  

operate the full drive system for at 

least 1 hour. 

Voltage regulator  

(Step Down) 
12V to 6V regulator - Powers subsystems requiring 6V. 

Voltage regulator  

(Step Down) 
12v to 5V regulator 

- Powers 5V logic devices like 

sensors, camera modules, and 

microcontroller. 

 

1.6 System Block Diagrams 

The following block diagrams illustrate the major subsystems of Astraeus and how they 

interconnect within the rover’s control architecture. These visual tools clarify data and power 

flow, assist in modular design, and serve as technical references during integration and 

troubleshooting. Each diagram focuses on a different aspect of the system, including full system 

architecture, power distribution, electromechanical control, and computer vision. 

1.6.1 Full System Architecture 

The full system block diagram provides a high-level overview of all major subsystems and how 

they interface with the central control unit. At the core of the system is the Raspberry Pi, which 

handles communication, decision-making, and coordination across modules. Inputs from sensors, 

including the HuskyLens AI camera and limit switches, feed into the Raspberry Pi for 

processing. Outputs are sent to motor drivers, servo controllers, and actuators, enabling 

autonomous movement and task execution. The block diagram clearly separates logical and 

physical connections, showing how power and control signals are routed to different 

components. 
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Figure 1. Full System Block Diagram 

1.6.2 Power Distribution 

The power block diagram focuses specifically on how energy is distributed throughout the rover. 

A 12V 30Ah lithium iron phosphate battery serves as the main power source. High-current loads 

such as DC motors are driven directly from this source through VNH5019 motor drivers. Buck 

converters are used to step down voltage for components that require lower operating levels, 

such as the Raspberry Pi (5V), servo power rail (7V), and ADCs or logic-level interfaces (3.3V 

or 5V). The diagram emphasizes safe current routing and system protection, including fuse 

points and rail separation. 

 

Figure 2. Power Distribution Block Diagram 
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1.6.3 Electromechanical Subsystem 

This diagram isolates the electromechanical module of Astraeus, showing how the drive system 

and robotic arm are managed. The rocker-bogie suspension is powered by six DC motors 

grouped into left and right sets, each set controlled by a dedicated VNH5019 motor driver. The 

5-axis robotic arm is controlled via a Maestro servo controller, which receives PWM signals 

from the Raspberry Pi and draws power from an independent 7V rail. The modular separation of 

drive and manipulation components supports parallel development and simplifies 

troubleshooting. 

 

Figure 3. Electromechanical Block Diagram 

 

1.6.4 Vision & Sensor Integration  

The vision block diagram details how sensor inputs are integrated into the rover’s control logic. 

The HuskyLens AI camera is the primary vision sensor, capable of recognizing objects, QR 

codes, and shapes. It communicates with the Raspberry Pi I2C, depending on the selected 

configuration. Additional digital and analog sensors, including Hall effect switches and limit 

switches, feed into an ADC or directly into GPIO pins on the Raspberry Pi. This diagram 

supports debugging of environmental perception and highlights how Astraeus navigates and 

responds to its surroundings. 
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Figure 4. Vision & Sensor Module Block Diagram 

1.7 Limitations 

The Astraeus prototype was intentionally scoped to balance both ambition and feasibility. To be 

ensured the project remained achievable within the available time, budget, and resource 

constraints. The limitations outlined below were not merely obstacles, but deliberate design 

boundaries established to focus on core functionality, proof of concept, and our project timeline. 

1.7.1 Scale and Functionality 

Astraeus was designed as a scaled-down prototype to validate key engineering concepts 

including rocker-bogie suspension, modular power systems, and solar panel cleaning. It does not 

represent the full mechanical scale, ruggedness, or redundancy required for deployment on Mars. 

The prototype focused on demonstrating subsystem integration rather than simulating the exact 

environmental conditions of extraterrestrial operation. 

1.7.2 Component Selection 

To maintain affordability and accessibility, the team selected commercial off-the-shelf (COTS) 

components, including hobby-grade servos, consumer microcontrollers, and non-radiation-

hardened sensors. While sufficient for a terrestrial prototype, these parts lack environmental 

endurance, fault tolerance, and precision of space-grade electronics. 
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1.7.3 Autonomy & AI Capabilities 

Full AI-based navigation was outside the project’s scope. Instead, Astraeus uses QR code 

detection for identifying solar panel targets and Sharp IR distance sensors to align precisely 10 

cm away from the panel before initiating cleaning. This control sequence provides reliable 

behavior in a controlled test setting but does not generalize to unstructured exploration, SLAM-

based mapping, or adaptive routing in dynamic environments. 

1.7.4 Panel Orientation Constraint 

To ensure mechanical stability and simplify cleaning arm operation, Astraeus was limited to 

cleaning panels mounted at a fixed 45-degree angle. This orientation was chosen based on 

physical testing constraints and recommendations from a NASA solar array specialist, who 

affirmed that this is a reasonable starting point for early-stage prototyping. The specialist noted 

that future Martian solar farms may include panels with variable orientations or sun-tracking 

capabilities and suggested designing for cleaning adaptability in future versions [A].  

(See Appendix A for the full email excerpt from NASA.) 

1.7.5 Testing Environment 

Terrain testing was performed on standard Earth surfaces with uneven obstacles. Although the 

team obtained 1 kg of MGS-1 regolith simulant, full environmental testing in UCF’s Martian soil 

pit was not completed due to a cost of $1200, which exceeded the project budget. The cleaning 

brush was tested on MGS-1 applied to a test panel, but traction and suspension behavior on true 

regolith-like terrain remains unverified. 

1.7.6 Power and Runtime Constraints 

The estimated power consumption was based on the final comprehensive power budget, and the 

system was powered by a 12V, 30Ah LiFePO₄ battery. However, extended runtime tests beyond 

two hours were not performed. Testing focused on short-duration functional sequences. Battery 

degradation, thermal behavior, and peak surge response were not assessed under prolonged use. 

1.7.7 Communication  

Astraeus uses a local server configuration hosted on the onboard Raspberry Pi, which serves a 

custom web interface for system control and monitoring. This architecture allows for direct 
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interaction through any device connected to the same local network, either via a hotspot hosted 

by the Pi itself or an external Wi-Fi access point. While this method is efficient for short-range 

testing and demonstration, it limits the rover’s operational range to areas with controlled wireless 

access. 

This setup does not support long-range wireless communication, remote telemetry, or 

autonomous data uplink capabilities such as those required in actual planetary missions. For this 

reason, real-time communication and system diagnostics were restricted to line-of-sight 

operation within a lab or field test environment. Implementing true remote telemetry would 

require additional hardware such as LoRa, cellular, or satellite modules, which were beyond the 

scope of this project. 

1.8 Comparison of Existing Products 

Astraeus represents a significant departure from previous Mars rovers by focusing on 

infrastructure support rather than scientific exploration. Traditional Mars rovers, such as 

Opportunity (MER-B) and Curiosity, were primarily designed for planetary research and were 

equipped with scientific instruments to analyze Martian soil, rocks, and atmospheric conditions. 

While these missions provided invaluable scientific insights, they were not intended to support or 

maintain infrastructure critical to human survival. In contrast, Astraeus offers a practical, robotic 

solution to a real operational challenge: dust accumulation on solar panels, which has historically 

limited the viability of solar energy on Mars. 

Mars rovers like Opportunity (MER-B) (Fig. 5) relied on solar panels for power, but 

ultimately suffered due to dust buildup, which reduced energy intake and led to mission failure 

[1]. Despite its robust design and autonomous capabilities, Opportunity had no built-in cleaning 

system, and the rover solely depended on unpredictable Martian wind events to clear its solar 

panels, which ultimately limited its operational lifespan. This demonstrated a major flaw in 

sustaining solar-powered operations on Mars. 
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Figure 5. Opportunity Rover 

 

 When up against Curiosity Rover (Fig. 6), the comparison highlights a different 

philosophy. Curiosity avoided this issue altogether by switching to a Radioisotope 

Thermoelectric Generator (RTG) for power, eliminating the need for solar panels altogether.  

 

 

Figure 6. Curiosity Rover Radioisotope Thermoelectric Generator 

 

While effective, RTGs are not scalable or ideal for manned missions due to limited fuel 

availability, safety concerns, and their complexity. This shift away from solar was not because 

solar is unviable but because we lacked a way to maintain solar systems in Martian conditions. 

This is where Astraeus becomes essential. While it does not generate power itself, Astraeus is 

designed to maintain large-scale solar farms on Mars, which would be critical to powering 

habitats, research stations, and equipment in future human missions. Its dual rotating brush arms 
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with static charge assist actively remove dust from panel surfaces, solving the exact problem that 

ended solar-reliant missions like Opportunity. Astraeus also uses a rocker-bogie suspension 

system, a proven design used on Opportunity and Curiosity, for navigating rocky, uneven 

Martian terrain. However, unlike its multi-million-dollar predecessors, Astraeus is built at a 

small-scale prototype cost of just $770, demonstrating that functional, effective solutions can be 

developed cost-efficiently and scaled up for future use. 

In comparison with commercial solutions like the SolarCleano F1 (Fig. 7). Astraeus also 

holds a distinct advantage for specific use cases. The SolarCleano F1 is a high-end product 

designed for large-scale solar farms, costing between $30,000 to $50,000+ and typically 

requiring manual or remote control. Astraeus fills a unique niche by adapting space-proven 

mobility and navigation systems to create an autonomous Martian cleaning robot, specifically for 

enabling sustainable solar infrastructure. 

 

 

Figure 7. SolarCleano F1 

 

Astraeus is a forward-thinking solution to one of the most pressing challenges facing 

future Martian exploration. By addressing the issue of dust accumulation on solar panels, 

Astraeus enables the long-term viability of solar infrastructure, which is essential for powering 

habitats, equipment, and life-support systems in manned missions. Its low cost, proven mobility 

system, and autonomous cleaning capability position it as a critical piece of future Mars mission 

success. 
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Table 6. Product Comparison Table 

Astraeus Comparison Table 

System Power Source Mobility Cost 
Ability to Clean 

Solar Panels 
Drive System 

Astraeus 

12V 30Ah 

Lithium-ion 

battery 

Rocker-bogie 

suspension with 

obstacle avoidance 

~$770 

(prototype) 

Dual rotating brush 

arm with static 

charge assist 

6 × 12V DC 

geared motors 

(skid steering) 

Opportunity 

(MER-B) 

Triple-junction 

solar panels 

(~140W init.) 

Rocker-bogie 

suspension, 

autonomous 

navigation 

~$400 million 

(NASA) 

Relied on Martian 

wind/dust devils 

6 

independently 

driven motors 

Curiosity 

Rover 

Radioisotope 

Thermoelectric 

Generator 

(RTG) 

Rocker-bogie 

suspension with 

enhanced 

navigation 

~$2.5 billion 

(NASA) 

Using nuclear 

power, no need for 

panel cleaning 

6-wheel 

independent 

drive with 

steering 

motors 

SolarCleano 

F1 

Swappable 

battery pack 

(3–4 hr 

runtime) 

Modular wheeled 

chassis, 

remote/manual 

control 

~$30K–$50K+ 

(estimate) 

Microfiber roller 

brush with 

adjustable pressure 

Electric 

wheeled drive 

(human or 

remote) 

 

1.9 Report Structure 

This report is structured to comprehensively document the design, development, testing, and 

analysis of the Astraeus autonomous solar panel cleaning rover. The report is organized into five 

separate chapters, each addressing a critical stage of the engineering process, along with 

appendices containing supplemental materials, datasheets, code, and reference documentation. 

 

Chapter 1 – Introduction: This chapter outlines the project’s purpose, motivation, 

engineering requirements, limitations, and a comparison of Astraeus with existing Mars 



 19  
 

and terrestrial systems. It also provides system block diagrams and discusses the rationale 

for each major design decision. 

 

Chapter 2 – Background Research: This section presents the technical and scientific 

research that informed the design of Astraeus, including studies on rocker-bogie 

suspension, Martian regolith properties, robotic arm mechanisms, vision systems, and the 

control platform. It also includes the power budget and algorithmic flowcharts that 

guided the system's logic. 

 

Chapter 3 – Contributions: Chapter 3 details the individual contributions made to each 

subsystem of Astraeus, including the chassis design, cleaning arm, rocker-bogie 

integration, software development, and hardware-software interface. It breaks down each 

design and assembly process along with programming considerations and testing 

outcomes. 

 

Chapter 4 – Non-Technical Issues: This chapter addresses the broader context of the 

project, including scheduling and planning, budgeting, environmental considerations, 

health and safety, ethics, and sustainability. 

 

Chapter 5 – Conclusion: The final chapter summarizes project outcomes and discusses 

system performance, including autonomous cleaning success and robotic arm 

functionality. It also offers suggestions for future enhancements such as self-docking 

stations and panel efficiency monitoring. 

 

Appendices: The appendices contain relevant datasheets, email correspondence, Maestro 

scripts, source code, and regulatory guidelines referenced throughout the report. These 

materials support transparency, reproducibility, and technical depth. 
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Chapter 2 Background 

Research 

Background Research 

 

 

 

 

 

 

2.1 Rocker-Bogie Suspension System  

2.2 Martain Regolith Research 

2.3 Drive System & Motor Control 

2.4 Robotic Arm & Cleaning Mechanism 

2.5 Sensors & Vision  

2.6 Control Platform and Programming Language 

2.7 Navigations & Task Execution Algorithms 

2.8 Power Budget  

Summary 

This chapter provides an in-depth discussion of the background research and technical 

components involved in the development of Astraeus. It begins with an explanation of the rover’s 

mechanical platform, including the rocker-bogie suspension system and drive architecture. The 

chapter then examines the robotic arm and cleaning mechanism used to interact with the panel 

surface, followed by the sensors and AI-based vision system used for object detection and task 

alignment. Control strategies and software implementation are also covered, including the 

rationale for selecting Python and a Raspberry Pi as the main programming and control platform. 

Finally, a detailed power budget is presented, demonstrating that the selected 12V 30Ah battery 

provides sufficient energy to support the rover through multiple operational cycles. Together, 

these sections form a comprehensive overview of the design, logic, and feasibility behind the 

autonomous operation of Astraeus. 
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2.1 Rocker-Bogie Suspension System 

The rocker-bogie suspension system is a foundational mechanism of Astraeus that was originally 

developed by NASA's Jet Propulsion Laboratory (JPL) for the Sojourner rover, which successfully landed 

on Mars as part of the Pathfinder mission in 1997. Since then, it has been used in every Mars surface 

mission involving rovers, including Spirit, Opportunity, Curiosity, and Perseverance. This system was 

selected for Astraeus because of its exceptional terrain adaptability, passive stability, and proven heritage 

in extraterrestrial environments. 

 Unlike conventional suspensions that use springs or shock absorbers, the rocker-bogie system 

distributes the rover’s weight equally across six wheels, connected by rocker arms and bogie links. These 

components are joined by a passive differential that allows each side of the suspension to move 

independently. This design offers two very critical advantages. First, the pressure each independent wheel 

applies to the ground is balanced or equilibrated [5], which is especially important on soft or loose terrain 

like Martian regolith. Excessive pressure from any single wheel could cause it to sink into the surface, 

reducing traction and increasing power demand. Second, in rocky or uneven conditions, all six wheels 

remain in contact with the ground and under load. This maximizes traction and propels the vehicle 

forward, allowing it to climb over obstacles more effectively [6] (Fig. 8). 

 

 

Figure 8. Rocker-bogie Suspension System Range of Contact 

 

2.1.1 3D Printing for Rocker Bogie Components 

3D printing plays a pivotal role in the fabrication of Astraeus’ rocker-bogie suspension system, aligning 

with industry trends in aerospace and planetary exploration. Research into 3D printing in space has 

demonstrated its feasibility for producing structural components using high-performance materials such 

as titanium, carbon fiber-reinforced polymers (CFRP), PEEK, and ULTEM. These materials offer 

excellent mechanical strength, thermal stability, and radiation resistance, making them suitable for long-
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term deployment in harsh extraterrestrial environments. Titanium has been explored for in-situ additive 

manufacturing due to its high strength-to-weight ratio and corrosion resistance, while CFRPs are favored 

for their durability and low mass in aerospace structures. 

Although such advanced materials are ideal for actual space missions, the Astraeus prototype is 

designed for Earth-based testing and demonstration. As a result, PETG (polyethylene terephthalate 

glycol-modified) was selected for the fabrication of the rocker-bogie system and other structural elements. 

PETG offers an ideal compromise between mechanical performance, printability, and cost. Compared to 

more specialized aerospace polymers like PEEK or ULTEM, PETG can be printed with standard FDM 

3D printers without requiring specialized high-temperature equipment. It provides better impact resistance 

than PLA and improved dimensional stability over ABS, which is critical for ensuring consistent 

geometry in mechanically loaded parts such as rocker arms, joint housings, and suspension brackets. 

 

 

 

Figure 9. Overture PETG 1.75mm 3D Printer Filament 

 

To ensure the durability of the rocker-bogie components under testing conditions, all PETG parts 

were printed using a reinforced configuration: 4 perimeter walls and 45% infill. This setting strikes a 

balance between strength and material usage, allowing the printed components to handle torsional and 

impact stresses experienced during navigation testing. By using PETG, customized components specific 

to the Astraeus rover’s rocker-bogie geometry were able to be rapidly printed and revised throughout the 

project’s development. This flexibility proved invaluable during prototyping and assembly, allowing parts 

to be revised and reprinted as the design evolved. Although PETG would not be suitable for direct space 
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deployment due to limitations in thermal and radiation tolerance, it serves effectively in this phase of the 

project by enabling efficient, low-cost development of functional prototypes. 

 

2.1.2 Implementing Rocker-Bogie 

For Astraeus, the rocker-bogie system was chosen to provide these same mechanical benefits in a smaller-

scale Earth-based prototype. The rover’s mobility platform was constructed using 1-inch PVC pipe for the 

suspension arms and 3D-printed PETG components for joints and wheel mounts. This lightweight, 

modular construction replicates a rocker-bogie system’s mechanical behavior while remaining within 

fabrication and budget constraints. 

The stability by using the rocker-bogie system is essential for Astraeus’ ability to clean solar 

panels. Because the rover must approach and clean solar panels mounted at a 45-degree angle, the 

suspension ensures that it remains level and balanced during arm deployment and cleaning. All six wheels 

stay grounded even when the front of the rover rises slightly to reach the panel, minimizing vibration or 

drift that could interfere with precision cleaning. Below is the complete CAD model within Fusion 360 of 

the rocker-boogie implemented onto the Main Chassis (Fig. 10). 

 

 

Figure 10. CAD model of the rocker-bogie suspension 

 

This design incorporates the 1-inch PVC suspension arms, PETG 3D-printed joints, and firm 

structural layout necessary to maintain balance and articulation across uneven terrain. While this specific 

chapter focuses on the background and justification of the suspension system, the specific construction 

process with details on material selection, joint design, and chassis integration is discussed in greater 

detail within Chapter 4. 
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2.2 Martian Regolith Research  

To ensure that the rocker-bogie suspension system would perform effectively under Martian 

terrain conditions, research and testing were conducted using MGS-1 (Fig. 11), a high-fidelity 

Martian regolith simulant developed by the Exolith Lab at the University of Central Florida. 

Martian regolith is known for its fine particulate size, angular grains, high abrasiveness, and 

electrostatic properties, all of which create mobility and durability challenges for planetary 

rovers. 

 

Figure 11. Martian Regolith 

 

The MGS-1 simulant closely replicates the geotechnical properties of Martian soil, 

including particle sizes between 0.02 mm and 1 mm, angular basalt grains, and a bulk density 

consistent with NASA site data. It is chemically formulated based on Mars Global Surveyor 

findings and includes oxides such as SiO₂, Fe₂O₃, MgO, and CaO. The complete mineral 

composition of the MGS-1 simulant is shown in Table 7. 

 

Table 7. Mineral Composition of MGS-1 
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Although the Exolith Lab offers access to a full-scale regolith testing pit, the quoted cost 

for formal testing was approximately $1,200, which exceeded the project’s budget. Instead, the 1 

kilogram of MGS-1 simulant was purchased through Space Resource Technology and used for 

localized testing of the brush cleaning mechanism. The simulant was spread across an acrylic 

solar panel surface to evaluate how effectively the rotating brush could remove particulate 

buildup under realistic Martian dust conditions. 

It is also important to mention that though mobility evaluation in the Exolith Lab’s 

regolith test pit was originally planned, the cost for formal access and supervision was out of the 

projects budget. As a result, the rocker-bogie system was instead tested on local terrain 

simulating uneven Martian-like conditions using natural Earth ground. While this does not 

replicate the mechanical drag or cohesion of Martian soil, it allowed the team to verify general 

suspension behavior and climbing ability within budgetary limits. 

2.3 Drive System & Motor Control 

This section details the selection, arrangement, and control of the drive motors, the integration of 

high-current motor drivers, and how the system can achieve reliable movement. The design 

emphasizes durability, torque efficiency, and control simplicity, ensuring that Astraeus can 

perform repeated traversal and obstacle negotiation tasks with precision and stability. 

2.3.1 Drive System 

The drive system of Astraeus consists of six Geartisan DC 12V motors (Fig. 12) [7] arranged in 

three pairs, each driving a wheel within the rocker-bogie suspension. Each motor operates at 

approximately 100 RPM under no load and can deliver the torque necessary to navigate rough 

terrain. The six motors are organized into two groups of three motors wired in parallel, with each 

group driving one side of the rover’s rocker-bogie suspension. Wiring motors in parallel ensures 

uniform voltage across each motor while summing their current demands, providing 

synchronized torque and smooth power distribution across the wheels. 
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Figure 12. Geartisan DC 12V 100RPM Gear Motor 

2.2.2 Motor Control 

Control and power delivery to the motors are managed by two VNH5019 motor driver carriers, 

each handling one group of three motors. VNH5019 drivers are well-suited for this application, 

offering up to 12 A of continuous current per driver and built-in safety features such as thermal 

shutdown and overcurrent protection [B]. These drivers enable bidirectional control and speed 

modulation through PWM signals, which allows Astraeus to perform precise movements, 

including smooth acceleration, deceleration, and direction changes [13]. 

(See Appendix B for VNH5019 Datasheet) 

 

 

Figure 13. VNH5019 Motor Driver Carrier 
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2.3 Robotic Arm & Cleaning Mechanism 

Astraeus has a custom-designed 5-axis robotic arm that enables the rover to be able to perform 

its panel-cleaning tasks. The arm is engineered to extend, position, and apply a duel spinning 

brush mechanism to remove Martian regolith from solar panel surfaces.  

The arm consists of five axes: base rotation, shoulder lift, elbow movement, wrist pitch, 

and wrist yaw. These movements are powered by a combination of 25kg-DS3225 (Fig. 14) and 

ANNIMOS 45 kg high-torque digital servos (Fig. 17), selected to meet the torque requirements 

under load. A lightweight 55 g servo (Fig. 16) is dedicated to controlling the left and right tilt of 

the wrist on the cleaning brush.  

 

 

Figure 14. 25kg-DS3225 High-torque Digital Servo 

 

 

Figure 15. ANNIMOS 45 kg High-torque Digital Servo 
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Figure 16. 55g High-torque Digital Servo 

 

The wrist-mounted cleaning tool features two N20 75:1 12V micro gear motors [9] (Fig. 

17), which provide the rotational force needed to spin the brush effectively. These motors are 

lightweight yet powerful enough to handle dust removal without adding significant inertia to the 

arm’s end effector. Their compact form factor allows for a balanced and efficient design suitable 

for dynamic arm movements. 

 

 

Figure 17. N20 75:1 12V Micro Gear Motor 

2.3.1 Arm Control and Integration 

Servo control for the robotic arm is handled by a 12-channel Mini Maestro servo controller [10] 

(Fig.18), which communicates via USB with the Raspberry Pi. This setup allows precise, multi-

axis control of all five servos using pre-programmed motion sequences or real-time commands. 

Maestro’s built-in support for acceleration and speed parameters enables smooth motion 

transitions and safe, synchronized joint operation during panel cleaning tasks. 

(See Appendix C for Maestro Servo Controller user guild.) 
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Figure 18. Mini Maestro 12-Channel USB Servo Controller 

 

The dual N20 micro gear motors that spin the brush are powered by a dedicated 

VNH5019 motor driver, independent from the Raspberry Pi. This driver is configured for 

continuous operation during cleaning sequences and is activated through a separate control 

system, which may include manual switches or preset logic depending on test conditions. By 

isolating brush motor control from the main processor, the system avoids drawing excessive 

current through the Pi and improves fault tolerance and modularity. This set up ensures reliable 

control of both the robotic arm and the cleaning mechanism. By separating the high-current 

brush motor driver from the logic-level servo system, Astraeus maintains safe and consistent 

operation. The arm and brush work in tandem to complete autonomous cleaning cycles, 

demonstrating the rover’s ability to perform maintenance tasks critically for long-duration 

planetary exploration. 

2.3.2 Cleaning Testing 

Astraeus is intended to function as a prototype for solar panel maintenance on Mars, where dust 

accumulation has historically degraded the performance of solar-powered missions. To 

demonstrate cleaning functionality in an Earth-based environment, a Solartech Power W-Series 

SPM030P-WP-F 30 W, 24 V polycrystalline solar panel [11] was used as the testing surface 

(Fig. 19). Although this panel does not match the engineering standards of space-grade solar 

arrays, it provides a practical and durable substrate for evaluating mechanical dust removal 

systems. This panel was generously provided by the team’s project advisor, Dr. Hall, to support 

development and performance testing of the cleaning mechanism. (See Appendix D for the 

Solartech SPM030P-WP-F data sheet.) 
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Figure 19. Solartech SPM030P-WP-F Polycrystalline Panel 

 

The cleaning tests involved applying MGS-1 Martian regolith simulant to the surface of 

the panel and activating the robotic arm’s brush mechanism to sweep across the array. Multiple 

cycles were run to evaluate dust clearance, contact behavior, and bristle alignment. These trials 

provided essential feedback for adjusting servo limits, brush torque, and arm positioning 

accuracy. 

A comparison between the demonstration panel and the types used in Mars missions such 

as Spirit and Opportunity is shown in Table 8. While the flight-rated panels feature higher-

efficiency triple-junction materials and are engineered to withstand extreme environmental 

conditions, the core issue of dust interference remains the same. 

 

Table 8. Solar Panel Comparison 

 

Feature 

(Specs) 

Solartech Power W-Series 

SPM030P-WP-F 

Mars Rover Solar Panels 

 (e.g., Spirit & Opportunity) 

Cell Type Polycrystalline silicon Triple-junction GaInP/GaAs/Ge 

Power Output 30W Approximately 140W (initial) 

Voltage 24V Variable 

Efficiency Approximately 14-15% Higher Efficiency due to advanced 

materials 

Cleaning 

System 

None (Manually cleaned during 

testing) 

None; relied on natural wind 

Durability Designed for terrestrial conditions Engineering for Martian 

Environment 
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2.4 Sensors & Vision  

Astraeus is equipped with a robust combination of proximity sensors and vision systems to 

support its autonomous navigation, obstacle avoidance, and target identification. These 

components work in tandem with each other to provide real-time environmental awareness, 

enabling the rover to navigate terrain safely and perform precise cleaning operations on solar 

panels. 

2.4.1 Proximity Sensors 

Obstacle detection is primarily handled by Sharp GP2D120 infrared (IR) proximity sensors [12] 

(Fig. 1\20), which provide reliable analog voltage outputs proportional to the distance of nearby 

objects. These sensors are mounted around the rover’s chassis to detect obstacles in its path, 

allowing Astraeus to dynamically adjust its speed and direction to avoid collisions during 

traversal. (See Appendix E  for GP2D120 Datasheet) 

 

 

Figure 20. Sharp GP2D120 Infrared (IR) Proximity Sensors 

 

Since the Raspberry Pi lacks native analog input capability, the IR sensors are interfaced 

through an external ADS1115 16-bit analog-to-digital converter (ADC) (Fig. 21) [13]. This high-

resolution ADC accurately converts the analog voltage readings from the sensors into digital data 

that the Raspberry Pi can interpret [9]. This allows for precise distance calculations and smoother 

navigation behavior. 
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Figure 21. ADS1115 16-bit analog-to-digital converter 

 

Because the IR sensors operate at 5V logic, and the Raspberry Pi’s GPIO pins are only 

rated for 3.3V, a logic level shifter is used to safely interface the two components. This ensures 

that communication between the ADS1115 and the Raspberry Pi remains safe and reliable, 

without risking damage to the Pi’s input circuitry. 

2.4.2 AI-Based Vision with HuskyLens 

Along with proximity sensing, Astraeus utilizes a HuskyLens AI camera (Fig. 22). This is a self-

contained vision module capable of performing real-time object detection and tracking [14]. The 

camera uses built-in AI models to recognize visual cues enabling it to detect and follow towards 

the solar panel located at the solar panel as a target. 

 

 

Figure 22. HuskyLens AI Camera 
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The Husky Lens communicates with the Raspberry Pi over UART, sending simplified 

tracking data without requiring intensive image processing on the Pi itself. This greatly reduces 

computational overhead while still enabling intelligent decision-making. During autonomous 

operation, the data from the HuskyLens is used alongside the IR sensor input to continuously 

refine the rover’s navigation path and panel alignment. 

2.5 Control Platform and Software 

The control module of Astraeus is built around the Raspberry Pi 3 Model B, a Linux-based 

single-board computer that serves as the main platform for the entire system’s hardware control. 

The Raspberry Pi handles all major subsystems including motor drivers, maestro servo 

controller, and sensors, using standard digital communication protocols such as UART, I2C, SPI, 

and general-purpose input and output [15].  

(See Appendix F for Raspberry Pi 3 Model B Datasheet) 

 

 

Figure 23. Raspberry Pi 3 Model B 

 

Astraeus is programmed using Python, a versatile and widely supported language well-

suited for hardware control and rapid development. Python allows for clear, modular code 
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structure and offers extensive libraries for communication and device integration. The project 

makes use of libraries for GPIO control, USB communication with the Mini Maestro servo 

controller, and I2C communication with the analog-to-digital converter that interfaces with the 

infrared distance sensors. 

2.5.1 Programming Languages and Software Architecture 

The software implementation for the Astraeus rover system utilizes a combination of 

programming languages, each selected for its specific strengths in handling embedded control, 

user interface design, and data processing. The control logic, sensor integration, and 

communication systems are primarily written in Python, while the front-end dashboard leverages 

standard web technologies to enable real-time interaction with the system. 

 

Python 

Python was the principal language used for developing the rover’s backend control and logic 

systems. The Raspberry Pi 3 executed all control scripts written in Python, managing motor 

commands, sensor readings, and system behavior through various modules. Key functionalities 

included: 

• Motor control and PWM regulation (motors.py) 

• Autonomous navigation and tag alignment (autonomy.py) 

• Sharp infrared distance sensing via ADS1115 ADC (sharp_sensor.py) 

• Visual target tracking using the HuskyLens I2C module (visual_module.py) 

• Subroutine triggering for Pololu Maestro controllers (maestro_module.py) 

• Parallel execution of the control loop and Flask server (start_all.py) 

• Logging of events, warnings, and alerts to a persistent database (logger.py) 

Python’s ease of integration, hardware compatibility, and multi-threading capabilities made it an 

effective tool for rapid development and reliable hardware control. 

 

Web Technologies (HTML, CSS, JavaScript) 

To provide a clean and interactive user interface, standard web technologies were used to build a 

dashboard accessible via any browser on the same local network. The interface included multiple 

pages for different control modes and system status viewing: 
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• HTML structured the web pages, including index.html, manual.html, and mode.html 

• CSS was used for styling the user interface to ensure usability and responsiveness 

• JavaScript, along with the nipplejs joystick library, enabled real-time manual control of 

the rover and dynamic updating of system logs via AJAX 

This frontend was served through Flask, allowing for real-time two-way communication between 

the user and the rover. 

 

SQLite 

A lightweight SQLite database was integrated into the system to store all log entries. The 

logger.py module handled automatic insertion of timestamped messages categorized by severity 

(INFO, WARNING, ALERT). These entries were dynamically retrieved and displayed within 

the dashboard interface, enabling operators to monitor rover activity and status over time. 

2.5.2 Software Libraries and Dependencies 

To support the functionality of the Astraeus system, a wide range of software libraries and 

external packages were used. These libraries enabled hardware interfacing, I2C communication, 

sensor data handling, multi-process execution, and server hosting. Below is a table of the key 

libraries and their roles within the project: 

 

Table 9. List of Libraries Used 

Library Purpose 

Flask 
Hosts the dashboard web server and handles HTTP requests for 

control and log viewing 

gpiozero 
Simplifies GPIO pin control for motor driver PWM and 

direction switching 

RPi.GPIO 
Used in low-level GPIO testing and setup, such as in 

blinka_test.py 

smbus2 
Enables I2C communication with peripherals like the ADS1115 

ADC 
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adafruit-circuitpython-

ads1x15 
Interfaces with the ADS1115 module to read analog sensor data 

multiprocessing 
Allows concurrent execution of the control loop and Flask 

server 

sqlite3 Manages event logging through a local database system 

nipplejs (JavaScript) Provides the virtual joystick interface for manual rover control 

blinker 
Supports signal handling between Flask components (optional 

utility) 

 

2.6 Navigations & Task Execution Algorithms 

Astraeus performs its autonomous tasks using a modular control architecture composed of 

independent yet interconnected software routines. These routines manage the rover’s navigation, 

alignment, cleaning, and return sequences using sensor input and pre-programmed logic. To 

visualize and guide this system-level behavior, a series of flowcharts were developed during the 

proposal phase to represent the algorithms that define the rover’s operational logic at each stage. 

These flowcharts are not only development tools but also serve as documentation for debugging, 

testing, and future system upgrades. 

2.6.1 Main System Flow 

The main flowchart (Fig. 24) serves as the overarching control structure for Astraeus, outlining 

the full sequence of operations from system initialization to shut down. Upon startup, the system 

enters a calibration stage to ensure all hardware components are set to a known and stable state. 

Following calibration, the vision system engages in detecting solar panels, preparing the rover 

for either autonomous or manual operation. If autonomous control is selected, the system 

transitions to a dedicated autonomy loop, while manual override allows human operators to 

directly command the rover. Upon task completion or intervention, the shutdown routine is 

executed to safely power down the system and reset components for future operations. This high-
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level flow defines how control logic is distributed across subsystems and ensures safe, modular 

transitions throughout the mission. 

 

Figure 24. Main Flowchart 

2.6.2 Manual Navigation Logic 

The manual control flowchart outlines how Astraeus interprets direct user input to execute 

predefined commands. Upon receiving a command and associated speed value, the system 

evaluates the type of instruction. If the command corresponds to an alignment procedure (e.g., 

"align1" or "align2"), it initiates the appropriate sequence and checks for successful completion. 

If a failure is detected, the system logs an error and halts further execution.  

If the command is a cleaning routine ("Seq1" or "Seq2"), the relevant cleaning sequence 

is triggered. For all other inputs, the rover sends a basic drive command controlling direction and 

speed. Once the instruction is executed, the command buffer is cleared, and the system is ready 
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for the next manual input. This routine allows a human operator to assume direct control over 

key rover functions for troubleshooting, calibration, or manual override operations. On the next 

page is the corresponding flow chart for the manual navigation logic (Fig. 25). 

 

Figure 25. Navigation Process Flowchart 



 39  
 

2.6.3 Autonomous Navigation Logic 

The autonomy flowchart governs Astraeus' fully independent operation, enabling it to perform 

tasks without human intervention. The process initiates autonomous path planning, where the 

rover calculates an optimal route to the nearest solar panel using environmental inputs. As the 

rover navigates, it continuously scans for obstacles using onboard sensors and vision algorithms, 

dynamically adjusting its route as needed.  

Upon arriving at the target, the system verifies the panel’s presence and transitions to the 

cleaning phase. Once the cleaning task is complete, the rover initiates a return-to-base procedure, 

ensuring it navigates back to its starting point. This flow encapsulates Astraeus' decision-making 

capabilities, enabling it to handle variable terrain and perform tasks with high independence. The 

corresponding flowchart for autonomous navigation logic (Fig. 26) is on the next page. 
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Figure 26. Alignment Process Flowchart 
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2.6.4 Panel 1 Cleaning Subroutine   

The “Panel 1” flowchart (Fig. 27) defines the behavior of Astraeus when it is engaged in 

cleaning the first solar panel in a multi-panel configuration. The routine begins by initializing the 

cleaning arm and orienting the brush to align with the first edge of the panel. Once properly 

aligned, the arm performs a single cleaning pass across a specific section of the panel. After the 

sweep is completed, the system verifies the cleaning status of the segment and prepares to 

transition either to the next section or the next panel. This modular approach ensures that 

individual panels are addressed with precision and consistency, enabling repeatable and scalable 

cleaning operations. The following flow chart for the cleaning process of panel 1 is shown on the 

next page. 
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Figure 27. Panel 1 Cleaning Flowchart 
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2.6.5 Panel 2 Cleaning Subroutine  

Like the logic in the Panel 1 sequence, the “Panel 2” flowchart (Fig. 28) manages the cleaning 

process for a subsequent solar panel. The rover repositions itself and adjusts the arm alignment to 

interface with the second panel. Once the panel is in position, the same cleaning sequence used 

in the first panel is executed, ensuring consistent methodology across different panel targets. 

After completing the task, the system logs the cleaning completion status, allowing the rover to 

track progress and make decisions for further tasks. This flow supports Astraeus’ ability to 

autonomously handle multiple panels during a single mission cycle. 
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Figure 28. Panel 2 Cleaning Flowchart 
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2.6.6 Full Cleaning Routine  

The “Clean All” flowchart (Fig. 29) provides the operational logic for executing a complete 

cleaning cycle of a detected solar panel. The sequence begins with initialization of the robotic 

arm and brush to a predefined starting position. Once the panel is confirmed and aligned, the 

panel is divided into discrete cleaning segments. The system then performs a looped sequence, 

where each segment is cleaned methodically. After each pass, the system checks if all segments 

have been addressed, and once cleaning is complete, the arm is retracted and stowed in its home 

position. This structured process ensures that each panel is thoroughly cleaned using a consistent 

and reliable pattern, optimizing coverage while minimizing mechanical strain. 
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Figure 29. Clean All Flowchart 
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2.7 Power Budget  

A comprehensive power budget was developed to verify that the selected power source could 

sustain all control, actuation, and sensor subsystems onboard Astraeus. The rover is powered by 

a 12V 30Ah LiFePO₄ deep cycle battery, which provides 360 watt-hours (Wh) of energy storage 

capacity (Fig. 30). This battery was chosen for its high energy density, flat discharge curve, 

rechargeability, and safety advantages over traditional lithium-ion chemistry. 

 

 

Figure 30. Botku 12 30Ah Lithium LiFePO4 Deep Cycle Battery 

 

Before the system was fully integrated, a proposed power budget was drafted to guide hardware 

selection, energy management, and subsystem distribution. This budget was based on datasheet values 

and expected duty cycles for each module. Although adjustments were made during implementation, the 

proposed budget served as a baseline for confirming that the selected power source could sustain all rover 

operations. The proposal power budget is show below in Table 10 and the Finalized budget is shown in 

Table 11. 
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Table 10. Proposed Power Budget 

Drive System Power 

Component Voltage (V) Current (A) Power (W) Qty Total Power (W) 

Greartisan 12V 100RPM Motors 12 1.1 13.2 6 79.2 

VNH5019 Motor Driver Carrier 5 1 5 2 10 

Total (W) 
    

89.2 

Control System Power 

Component Voltage (V) Current (A) Power (W) Qty Total Power (W) 

Raspbery Pi 3B 5 3 15 1 15 

ESP32-CAM 5 0.5 2.5 1 2.5 

Maestro Servo Controller 6 1 6 1 6 

VNH5019 Motor Driver Carrier 5 1 5 1 5 

HuskyLens AI 5 0.32 1.6 1 1.6 

ADS1115 16 Bit ADC PGA Converter 5 0.03 5.03 1 5.03 

Sharp IR Analog Distance Sensor 5 0.03 5.03 4 20.12 

Total (W) 
    

55.25 

Robotic Arm Power 

Component Voltage (V) Current (A) Power (W) Qty Total Power (W) 

25kg Servos (Base & Shoulder) 6 3.5 21 2 42 

20kg Servo (Elbow) 6 2.5 15 1 15 

55g Servos (Wrist & Tilt) 6 2.5 15 2 30 

Pololu 6V 100RPM Brush Motors 6 2 12 2 24 

Total (W) 
    

111 

System Total (W) 
    

255.45 

Power Module 

Component Voltage (V) Current (A) Power (W) Qty Total Power (W) 

LiFePO4 Deep Cycle Battery 12 30Ah 360 Wh 1 360 

Total (W) 
    

360 
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Table 11. Comprehensive Power Budget 

Control Module Power 

Component Voltage (V) Current (A) Power (W) Qty Total Power (W) 

Raspbery Pi 3 Model B 5 3 15 1 15 

VNH5019 Motor Driver Carrier 12 2.4 28.8 2 57.6 

VNH5019 Motor Driver (Logic Supply) 3.3 0.04 0.132 2 0.264 

VNH5019 Motor Driver Carrier 7 0.04 0.28 1 0.28 

VNH5019 Motor Driver (Logic Supply) 3.3 0.04 0.132 1 0.132 

Maestro Servo Controller 6 1 6 1 6 

ADS1115 16 Bit ADC PGA Converter 5 0.03 5.03 1 5.03 

Total (W) 
    

77.63 

Electro-Mechanical Module Power 

Component Voltage (V) Current (A) Power (W) Qty Total Power (W) 

Greartisan 12V 100RPM Motors 12 0.8 9.6 6 57.6 

25kg Servos 7 2.5 17.5 2 35 

45kg Servos 7 4.5 31.5 1 31.5 

55g Servos (Wrist & Tilt) 7 0.4 2.8 1 2.8 

N20 Micro Gear Motors 7 0.35 2.45 2 4.9 

Total (W) 
    

131.8 

Vision Module Power 

Component Voltage (V) Current (A) Power (W) Qty Total Power (W) 

HuskyLens AI 5 0.32 1.6 1 1.6 

Sharp IR Analog Distance Sensor 5 0.03 5.03 4 20.12 

Total (W) 
    

21.72 

System Total (W) 
    

231.15 

Power Module 

Component Voltage (V) Current (A) Power (W) Qty Total Power (W) 

LiFePO4 Deep Cycle Battery 12 30Ah 360 Wh 1 360 

Total (W) 
    

360 
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Chapter 3 Contributions 
 

Contributions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Main Chassis Contributions 

3.2 Cleaning Arm Contributions 

3.3  Rocker-Bogie Contributions 

3.4 Software Development  

Summary 

 
This chapter details the contributions made by each team member to the design and 

development of Astraeus; a prototype solar support rover designed for future testing 

in simulated Martian environments. Specifically, it outlines the technical progress 

made in building the rover’s major mechanical components and documents the 

decisions, modifications, and challenges faced throughout the design process. 
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3.1 Main Chassis Contributions 

This section outlines Mark’s contributions to the design, fabrication, and refinement of the 

Astraeus main chassis. From early CAD modeling to physical assembly, the chassis underwent 

multiple design iterations to support subsystem integration, mechanical stability, and long-term 

modularity. 

3.1.1 Structural framework and layout 

The primary objective in designing the main chassis was to create a robust yet modular and 

adaptable frame capable of supporting all subsystems of Astraeus. The structural skeleton was 

built using 20 by 20-millimeter aluminum V-slot extrusions, chosen for their high strength-to-

weight ratio and compatibility with standardized M4 T-nuts and bolts. These extrusions provided 

a versatile mounting platform for attaching mechanical subsystems, suspension components, and 

electronics. 

The entire chassis was modeled using Autodesk Fusion 360. Creating a fully integrated 

CAD model enabled the team to visualize the complete system layout, plan subsystem 

integration, and identify potential mechanical or spatial conflicts prior to physical assembly. The 

model served as a reference throughout the build process, ensuring proper alignment and 

accurate placement of critical components such as the rocker-bogie suspension, battery tray, and 

arm mount. 

To join the extrusions at structural intersections, custom corner brackets were designed 

and 3D printed using PETG filament, as shown in Figure 20. PETG was selected for its excellent 

mechanical strength, print reliability, and resistance to fatigue. The bracket geometry was 

optimized to reduce print time and improve surface quality while maintaining the durability 

needed to withstand repeated assembly, vibration, and operational stress. Their modular design 

allowed for quick reprinting and field replacement when design adjustments were required.  
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Figure 31. Corner Brackets on Print Plate 

 

Once the bracket design was finalized, the complete frame was constructed in CAD (Figure 21). 

The extrusion layout was carefully planned to maintain structural symmetry, maximize component 

accessibility, and accommodate future expansion. The use of standardized hardware and open-slot rails 

ensured that all subsystems could be securely mounted while retaining the flexibility to reposition or 

replace them during later development phases. 

 

 

Figure 32. Main Chassis CAD Model 

3.1.2 Structural Design Features 

Three key structural features were integrated into the chassis design to support the mechanical 

integrity, modularity, and balance of the Astraeus rover during operation and testing. The rocker-

bogie suspension hubs that mount on both sides of the chassis serve as the primary pivot points 

for the rocker arms. The rocker-bogie suspension hubs were mounted along both sides of the 
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chassis and served as the main pivot points for the rocker arms. These hubs were attached to the 

side rails using M4 T-nuts and bolts, allowing them to slide laterally during assembly for precise 

alignment. To reinforce the structure and maintain symmetry, a crossbar made from a cut section 

of 20 by 20-millimeter aluminum extrusion was installed to link the left and right hubs. This 

mechanical linkage ensured synchronized movement across the suspension and prevented 

uneven pivoting during traversal. 

 

 

Figure 33. Rocker-Bogie Mounting Hubs 

 

After finalizing the position of the suspension hubs, the crossbar extrusion was also 

utilized as a mounting structure for the rotational base of the robotic arm. This dual-purpose 

design allowed the servo responsible for base rotation to be anchored directly to the crossbar, 

providing a rigid and centrally located foundation. The use of this existing structural element 

reduced the need for additional material and helped integrate the robotic arm cleanly into the 

rover’s overall layout. 

 

 

Figure 34. Base Rotation Servo Mount 
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To support rotation and reduce load on the base servo, a \mounting plate was added to the 

top of the chassis. This plate spanned multiple extrusion rails and included a central cutout for 

the arm’s main servo shaft. A four-inch lazy Susan bearing was incorporated beneath the plate to 

reduce rotational friction, distribute load evenly, and improve stability during arm motion. The 

widened geometry also allowed more mounting points to be used, which reduced flex and 

improved the rigidity of the overall assembly during brushing operations. 

 

 

Figure 35. Robotic Arm Baseplate & Lazy Susan Integration 

 

To balance the overall weight of the rover, the battery tray was installed along the 

internal rails of the frame. Mounted using M4 T-nuts and bolts, the tray could be shifted between 

the front and rear of the chassis to compensate for changes in the center of gravity as additional 

subsystems were added. This modular design made it possible to fine-tune the balance of 

Astraeus during testing without requiring permanent structural changes. 

 

 

Figure 36. Battery Tray Integration 
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3.1.3 Assembly and Dimensional Refinements 

During the initial assembly phase, several adjustments were made to improve structural stability, 

ensure mechanical alignment, and accommodate shifting mass distribution as new subsystems 

were integrated. Aluminum extrusions were trimmed and re-squared as needed to eliminate 

minor inconsistencies and improve frame symmetry.  

 

 

Figure 37. Main Chassis Assembled 

 

Thinking ahead and compensating for the unknown mass distribution during early design 

stages, the battery tray was mounted using M4 T-nuts and bolts, allowing it to slide along the 

interior frame between the front and rear sections of the rover. This adjustment allowed for fine-

tuning of the center of gravity and simplified balancing the chassis as heavier subsystems such as 

the arm and electronics were installed. Another enhancement made prior to the final assembly 

was widening the mounting plate for the base of the robotic arm. By extending the plate across 

more of the aluminum extrusion surface, additional mounting points could be secured, reducing 

torsional stress during arm actuation. This change improved mechanical stability during brushing 

sequences and minimized vibration. 

3.2 Cleaning Arm Contributions 

This section outlines Marks’ contributions to the development process of the Astraeus robotic 

cleaning arm, from initial CAD modeling and servo selection to physical assembly, structural 

reinforcement, and servo programming using the Maestro Servo Control Center. 
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3.2.1 CAD Design & Mechanical Layout 

The Astraeus robotic arm was conceptualized and modeled as a five-axis articulated arm, capable 

of cleaning solar panels autonomously using a preprogramed sequence after the rover has aligned 

with the panel. The CAD model, created using Autodesk Fusion 360, detailed each point of 

articulation, including base rotation, shoulder and elbow articulation, wrist rotation, and a tilting 

brush end-effector. The arm was designed to have a reach of approximately 27.5 inches which is 

sufficient to clean a full 30W Solartech Power W-Series solar panel from a fixed chassis 

position. Figure 27 below represents this initial design as it was presented during the proposal 

phase. 

 

 

Figure 38.  Initial Robotic Arm CAD Model (Proposed Design) 

 

The model accounted for servo selection, wiring clearances, and structural stability. The 

base of the arm incorporated a high-torque servo mounted on a reinforced plate, supported by a 

4-inch lazy Susan bearing to reduce axial load on the servo during arm movement. The model 

also included mounting brackets, joint alignments, and spatial integration with the main rover 

chassis. Because it was designed modularly, it made it easy for the design to undergo multiple 

revisions for optimizing servo loads and clearances prior to assembly. 
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3.2.1 Initial Servo Selection and Justification 

Servo models were initially chosen based on their torque ratings and suitability for the load 

experienced at each joint. The first configuration used DS3225MG 25kg·cm servos for the base 

and shoulder joints, a DS3218MG 20kg·cm servo for the elbow, and MG996R servos for the 

dual-axis wrist mechanism. The specifications for this original proposed design during the 

previous semesters are provided in Table 12. 

 

Table 12. Robotic Arm Servo Specifications 

Servo Function Model Torque 
Operating 

Voltage 
Stall Current 

Rotation 

Range 

Base DS3225MG 25kg·cm (6V) 4.8V - 7.4V 3.5A 180° 

Shoulder DS3225MG 25kg·cm (6V) 4.8V - 7.4V 3.5A 180° 

Elbow DS3218MG 20kg·cm (6V) 4.8V - 6.8V 2.5A 180° 

Wrist (U/D) MG996R 20kg·cm (6V) 4V - 6V 2.5A 180° 

Wrist (L/R) MG996R 
55g Metal Gear 

Servo 
4V - 6V 2.5A 180° 

 

However, after physical testing and structural revisions, it became clear that higher-

torque servos were required to ensure reliable operation. The finalized configuration included 

DS3235 servos at the base and shoulder, DS3225MGs at the elbow and wrist (U/D), and a 

smaller DS3225MG handling wrist tilt (L/R) due to its lightweight load. The revised servo 

specifications are summarized in Table 13. 

 

Table 13. Revised Robotic Arm Servo Specifications 

Servo Function Model Torque 
Operating 

Voltage 
Stall Current 

Rotation 

Range 

Base DS3235 25kg 7V ~2.5 A 180° 

Shoulder DS3235 45kg 7V ~4.2 A 270° 

Elbow DS3225MG 45kg 7V ~4.2 A 270° 

Wrist (U/D) DS3225MG 25kg 7V ~2.5 A 180° 

Wrist (L/R) DS3225MG 55g 7V ~0.4–0.5 A 180° 
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3.2.3 Power Considerations 

After finalizing the revised servo configuration for the robotic arm, it became critical to evaluate 

whether the increased electrical load from the new servos, particularly at the shoulder and elbow 

joints, would remain within the rover’s available power budget. The higher torque ratings of 

these servos introduced greater current demand, which required a careful recalculation of the 

total power consumption to ensure compatibility with the existing electrical system. 

Each servo was changed based on its mechanical performance requirements. After 

selection, the electrical characteristics were evaluated in relation to the rover’s standardized 

power supply. The operating voltage for all servos was set to 7 volts, delivered by a dedicated 

high-current voltage regulator. According to manufacturer data, the estimated stall current values 

for each servo in the final configuration are as follows: 

 

• Base (DS3235): ~2.5 A 

• Shoulder (DS3235): ~4.2 A 

• Elbow (DS3225MG): ~4.2 A 

• Wrist (U/D) (DS3225MG): ~2.5 A 

• Wrist (L/R) (DS3225MG): ~0.5 A 

 

When all values are summed, the total estimated stall current is approximately 13.9 amperes. 

At the operating voltage of 7 volts, this results in a peak power demand of: 

 

𝑃𝑜𝑤𝑒𝑟 = 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = 7𝑉 ∗ 13.9𝐴 = 97.3 𝑊 

 

This value represents a worst-case scenario where all five servos are stalled 

simultaneously, which is highly unlikely during normal operation. In typical use, servos draw 

only a fraction of their stall current. Based on manufacturer guidelines and real-world conditions, 

the robotic arm is expected to operate between 30 to 50 percent of stall current. Using an average 

of 50 percent, the expected current draw becomes: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = 13.9𝐴 ∗ 0.5 = 6.95 𝐴  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 = 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = 7𝑉 ∗ 6.95𝐴 = 48.7 𝑊 
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This average power consumption fits within the robotic arm's allocated share of the 

rover’s overall power budget. It also provides a safety margin to accommodate variations in load 

during operation. The wiring, connectors, and voltage regulator selected for this system are rated 

above the expected peak current, ensuring both electrical reliability and thermal safety.  

The updated power budget also confirms that the final servo configuration is not only 

mechanically capable but also electrically viable. With this validation complete, the arm was 

able to be mechanically assembled and integrated onto the arm for further testing. 

3.2.4 Robotic Arm CAD Design 

After confirming the revised servo configuration met both mechanical and electrical 

requirements, the project moved into the physical assembly stage. When developing the initial 

concept for the robotic arm, multiple CAD revisions were made throughout the design process to 

enhance mechanical stability and accommodate the functional requirements of the cleaning 

system. Early joint layouts and arm dimensions were based on preliminary torque calculations 

and assumptions, but once the parts were 3D printed and assembled, significant flex became 

apparent, especially around the bicep and elbow joints. 

During initial physical testing, the arm exhibited noticeable wobbling and instability, 

particularly when fully extended or lifting the brush (Fig. 28). This behavior compromised the 

precision of movement and prompted a close evaluation of the mechanical design. It was 

determined that the source of the issue stemmed not only from insufficient torque in the original 

servos but also from the structural layout of the elbow joint. 

The elbow was initially constructed using a single shear mounting configuration, where 

the pivot bolt passed through only one side of the joint bracket. This simplified assembly but 

concentrated stress on a single plane, which allowed for excessive rotational play. Under load, 

this created a mechanical weak point that reduced accuracy and raised concerns about long-term 

fatigue. 
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Figure 39. Robotic Arm single-sheer joint 

 

To address this issue, the elbow was redesigned using a double shear mounting 

configuration, where the pivot pin is sandwiched between two opposing plates (Fig. 29). This 

evenly distributes the applied load across both sides of the joint, dramatically improving 

structural stability and reducing flex. Additional CAD modifications included reinforcing the 

forearm with another double shear bracket and adding an outer plate between the shoulder and 

elbow segments to stiffen the arm as it moves. 

 

 

Figure 40.  Revised Robotic Arm 

 

These structural changes directly informed the decision to revise the servo specifications. 

The observed flex underload revealed that the originally selected servos did not provide 

sufficient holding torque. To resolve this, the shoulder and elbow servos were upgraded to 

DS3235 and DS3225MG models, which offered significantly higher torque output. With the 

stronger servos and revised mechanical joints, the arm’s performance and stability improved 

substantially. Initial tests from programing the sequences confirmed that the reinforced design 

minimized structural wobble and maintained accuracy through the entire range of motion. 
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3.2.5 Brush Cleaning Mechanism CAD Design 

After completing the arm revisions, focus was shifted to finalizing the design for the cleaning 

mechanism. The goal of this specific subsystem was to simulate removing Martian regolith from 

solar panels using a lightweight yet efficient duel rotating brush assembly. 

 All components for the cleaning mechanism were modeled in Fusion 360, including the 

structural housing and custom gear train. During the proposal phase, the option of sourcing 

custom-made brush assemblies from commercial vendors to meet the specific needs of this 

application were considered. However, due to the high cost of custom fabrication and low 

production volume, this option was ultimately deemed impractical within the project’s budget. 

As a cost-effective alternative, nylon-Teflon hybrid brushes were selected for their ability to 

generate a static charge during rotation, which enhances their effectiveness in lifting fine 

particulate matter such as Martian dust simulant. These brushes, commonly found in robotic 

vacuum systems (Fig. 41), were adapted to fit the arm using 3D-printed holders designed in 

Fusion 360. 

 

Figure 41. ECOMAID Brush Compatible for iRobot Roomba 

 

To rotate each brush, N20 micro gear motors were chosen due to their compact size, low 

weight, and adequate torque output. Because the motor and brush shafts are oriented 

perpendicularly, a direct-drive configuration was not possible within the constrained form factor 

of the wrist assembly. To address this, a compact bevel gear system was designed in Fusion 360 

to transfer motion from the motor shaft to the brush.  

Each gear was designed to snap-fit onto the end of the brush shaft, eliminating the need 

for glue, fasteners, or brush modification. On the motor side, the mating bevel gear is friction-fit 
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to the N20 motor shaft, providing secure torque transfer without requiring permanent alterations. 

This allowed for fast assembly, simplified maintenance, and brush replacement if needed. 

 

 

Figure 42. Bevel Gear Mechanism CAD Model 

 

A servo-controlled tilt mechanism was also integrated at the wrist, enabling the entire 

brush assembly to pitch forward and backward to conform to varying panel angles during 

cleaning. This articulation ensured even contact pressure across the brush path and helped 

compensate for terrain or rover body tilt. 

 

 

Figure 43. Wrist Rotation Mechanism CAD Model 

The final brush module combined the rotating brush, friction- and snap-fit bevel gear 

system, N20 gear motor, and tilt servo, all mounted to a PETG-printed housing. Since both the 

robotic arm and brush mechanism were finalized and validated, they were ready to be fully 

integrated onto the rover chassis during final assembly and wiring. 

3.2.6 Arm & Electrical Integration 

Once the mechanical structure of the robotic arm and brush mechanism were finalized, the next 

stage involved integrating the assembly into the rover and completing the electrical wiring. The 
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arm was mounted onto a 3D printed plate on the rover’s chassis using M4 screws and washers. A 

4-inch lazy Susan bearing (Fig. 44) was installed beneath the base servo to reduce strain on the 

servo shaft while allowing smooth rotational movement. 

 

 

 

Figure 44. 4-inch Lazy Susan 

 

Initially, the servos were powered directly through the Maestro servo controller, but this 

configuration quickly proved inadequate. The wiring on the Maestro was not rated to handle the 

combined current load of all five high-torque servos, which caused power inconsistencies and 

unreliable operation. To resolve this, the servo power lines were rerouted to a dedicated power 

rail connected to a buck converter that steps down 12V to 7V and can handle up to 20 amps of 

continuous current (Fig. 45). This external power rail ensured stable and sufficient power 

delivery to each servo. 

 

Figure 45. DC-DC Stepdown Regulator 6-40V into 1.2-36V 20A out 

 

Each servo’s control signal line was still connected to the Maestro controller, occupying 

channels 0 through 4 in the following order: base, shoulder, elbow, wrist (up/down), and wrist 
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(tilt). However, because the servos were no longer powered through the Maestro itself, shared 

ground was necessary to ensure signal integrity. A ground wire was added between the Maestro's 

power ground and the new external 7V power rail, allowing both systems to share a common 

reference. Once this ground connection was established, all servos began responding reliably to 

signal commands. The cleaning brush N20 micro gear motors were electrically wired in parallel 

to simplify routing and ensure synchronized rotation. These motors were powered independently 

of the servos and were connected to a dedicated VNH5019 motor driver (Fig 46).  

 

 

Figure 46. Maestro & VNH5019 Wiring 

 

All wiring was organized using zip ties to secure loose lines and prevent interference with 

the arm's moving components. Careful attention was paid to routing near joints and along the 

chassis to avoid pinch points. While no protective sleeve was used, the clean routing and 

physical constraints ensured that cables remained secure during full articulation. 

 

 

Figure 47. Arm & Brush Fully Assembled 
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With the wiring and mounting complete, the arm system was powered on and underwent 

control validation. Each servo responded correctly through the Maestro interface, and the N20 

motors operated reliably under VNH5019 control. This marked the successful completion of 

mechanical and electrical integration for the Astraeus robotic arm system. 

3.2.7 Servo Programing with Maestro Control Center 

With servo power and signal wiring complete, servo control and motion sequencing were 

implemented using the Pololu Maestro Control Center. This Windows-based application 

communicates directly with the 12-channel Micro Maestro over USB and provides a graphical 

interface for configuration, manual control, and embedded scripting to enable autonomous 

operation of the robotic arm. Each joint of the robotic arm was assigned to a dedicated Maestro 

channel as follows: 

 

Channel 0: Base rotation 

Channel 1: Shoulder 

Channel 2: Elbow 

Channel 3: Wrist (up/down) 

Channel 4: Wrist (left/right tilt) 

 

The Status tab within the Maestro software was initially used to manually actuate each 

servo using on-screen sliders. This facilitated real-time validation of mechanical range, 

identification of center positions, and refinement of joint limits. In the Channel Settings tab, each 

servo was configured with a minimum pulse width of 3968, a maximum of 8000, and a neutral 

center of 6000 microseconds. Channel-specific speed and acceleration values were assigned 

based on the mechanical load of each joint. For instance, the shoulder joint, which supports the 

heaviest load, was assigned lower speed and acceleration values to reduce mechanical stress 

during motion. 

To automate movement, the Sequence tab was used to construct motion routines from a 

series of servo position frames with defined durations. Each sequence comprises named frames 

that store exact servo positions and timing in milliseconds, allowing repeatable and smooth 

transitions. Key sequences developed for Astraeus include: 
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• Sequence 0: Resets the robotic arm to a stowed position for startup and shutdown 

procedures. 

• Sequence 1: Performs a full brushing routine, including elbow extension, coordinated 

wrist adjustment, and sweeping motions. 

• Sequence 1.1: Extends the basic brushing routine with additional directional shifts, 

allowing multi-pass coverage across a solar panel surface. 

 

Each frame within a sequence is defined by target values for servo positions, speed, and 

acceleration. For example, the frame SweepDownL within Sequence 1 activates a combination 

of base rotation, elbow extension, and wrist articulation to simulate a downward brushing motion 

on the left side of the panel. Frames like Raise for Clearance provide lift motions to avoid 

collisions between brushing passes. 

Once sequences were validated through live testing, they were exported to the Script tab 

using Pololu’s stack-based scripting language. In the script, each frame was converted into a 

reusable subroutine (e.g., frame_0..11, frame_3_4), and high-level sequence logic was 

constructed using custom subroutines such as Sequence_0, Sequence_1, and Sequence_11. 

Script commands such as servo and delay control motion execution and timing. A key 

architectural advantage of this approach is that the complete motion logic is stored onboard the 

Maestro controller. The Raspberry Pi control system can initiate an entire sequence using a 

single serial command, significantly reducing software overhead and improving execution 

reliability during autonomous operation. For reference, the full annotated Maestro configuration 

file is included in Appendix [G], detailing all servo settings, sequence definitions, and embedded 

scripts used in the Astraeus robotic arm. 

3.3 Rocker-Bogie Contributions 

This section marks the beginning of Pedro’s contributions to the Astraeus rover project. 
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3.3.1 Rocker-Bogie Design 

The rocker-bogie suspension system was fully designed from scratch in Fusion 360, including all 

structural joints, brackets, and wheel components. Every part of this subsystem was created to 

strict dimensional tolerances to support reliable movement, modular assembly, and real-world 

fabrication using PVC tubing and 3D-printed brackets. 

The design process began with the creation of a single wheel, which was fully modeled 

with a ribbed exterior for terrain grip and a custom internal hub to match the motor shaft. Once 

finalized, this wheel was duplicated and mirrored across the chassis to form the remaining five 

wheels. Similarly, the entire rocker and bogie geometry was first designed on one side of the 

rover, then mirrored to create the opposite side. This approach ensured symmetry while reducing 

repetitive CAD work and limiting dimensional mismatch. 

Three primary rocker joints were designed: 

 

• The chassis-to-rocker joint, which allows each rocker arm to pivot relative to the main 

frame. 

• The rocker-to-bogie joint, enabling the bogie segment to rotate independently and allow 

rear wheel articulation. 

• The sway bar interface joint, connecting the rocker arms to the central differential bar 

and allowing balanced terrain compensation between both sides. 

 

 

Figure 48. Astraeus Wheel 
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These joints were modeled individually and designed to accept standard PVC tubing, which 

serves as the load-bearing link between segments. Each joint was developed to ensure tight press 

fits or proper mounting holes, depending on the connection type. 

At the end of each rocker arm, a modular three-part assembly was created to support the 

motor and wheel. This included: 

 

• The motor bracket, which secured the drive motor directly to the wheel mount with 

appropriate offsets and flange supports. 

• The L-bracket, which linked the motor bracket to the end of the rocker arm while 

maintaining correct alignment. 

• The end joint, which completed the connection between the rocker and bogie structure, 

formed the transition to the next wheel support. 

 

 

Figure 49. Rocker-Bogie Assembly (Right) 

 

These components were designed to interlock and remain interchangeable. This modularity 

was especially important during physical testing, as it allowed damaged or experimental parts to 

be swapped without redesigning the entire system. 

The most technically challenging part of the design involved angled tube connections 

between the rocker and bogie arms. These parts needed to be connected at both outward and 

downward angles, which cannot be accomplished with basic extrusions. To resolve this, a multi-

step modeling approach was used: 

• A construction line was created between the start and end points of each angled 

connection. 

• A sweep extrusion was performed along that line to form the connecting pipe. 

• Each end was trimmed flat using a 90-degree cut, ensuring proper mounting faces. 
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• Because the angled cut created elliptical ends, new planes were placed at each face, and a 

1-inch diameter circle was redrawn and extruded to restore perfect circular geometry. 

 

This method was repeated for each connecting tube, ensuring all joints maintained structural 

integrity and geometric precision. 

The sway bar was also modeled from scratch and connects both rocker arms through a 

differential linkage. It was designed to rotate passively, allowing the rover to adjust to uneven 

terrain while keeping the main chassis relatively level. The sway bar terminates in custom 

mounting heads that interface with the rocker joints on each side. 

Every structural segment of the rocker-bogie system was matched to standard PVC tube sizes for 

easy fabrication. The CAD models ensured each piece aligned correctly with physical cut lengths 

and motor dimensions. 

This section of the building was critical to both the rover’s functionality and overall 

presentation. Any dimensional inaccuracy would compromise weight distribution, cause 

instability, or interfere with motor alignment. The success of this design directly impacted on the 

rover’s ability to operate effectively and withstand real-world conditions. 

 

 

Figure 50. Full Rocker Boggie Assembly 
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3.4 Software Development 

This section outlines Pedro’s contributions to the software development of the Astraeus rover. 

The software system was engineered to enable both manual and autonomous operation, with 

integrated sensor feedback, precise motor control, and dynamic task execution. Key 

functionalities include real-time web-based interaction, modular control over subsystem 

behaviors, and coordination with external components such as vision modules and actuator 

controllers. Every part of the codebase, from low-level GPIO handling to high-level user 

interface logic, was developed in-house with a focus on robustness, clarity, and future 

expandability. The resulting architecture allows for seamless transitions between control modes, 

efficient sensor data processing, and simplified debugging across individual modules. 

3.4.1 Software Architecture Overview 

The software system developed for the Astraeus rover was designed with modularity and layered 

control in mind. Each component of the software is encapsulated in its own module, allowing for 

individual development, testing, and debugging without compromising the integrity of the 

overall system. The architecture is split into three primary layers: the control logic layer, the 

hardware interface layer, and the user interface layer. 

At the core of the system lies the control logic, which governs the flow of commands and 

decision-making during both manual and autonomous operation. The entry point for this logic is 

handled by start_all.py, which is responsible for launching concurrent processes, specifically the 

main control loop (main.py) and the Flask-based web server (app.py). These processes 

communicate through shared buffer modules (such as command_center.py), ensuring real-time 

responsiveness across both user and sensor-driven events. 

Manual and autonomous modes are managed through separate but coordinated pathways. 

Manual commands originate from the web interface and are transmitted via HTTP POST 

requests to app.py. These are then stored in memory and continuously polled by the control loop 

in main.py, which interprets and executes them accordingly using the movement functions 

defined in motors.py. 

Autonomous functionality is implemented as a modular set of routines inside 

autonomy.py. These routines operate in stages, each representing a distinct autonomous 

behavior, such as tag following, alignment, cleaning, or repositioning. Transitions between 
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stages are handled through internal logic based on visual input, sensor feedback, or timed 

sequences. The control loop evaluates the current mode of operation and delegates control to 

either the autonomous behavior set or the manual command interpreter. 

Hardware interfacing is abstracted into independent modules. Motor control is handled 

through motors.py, which provides clean, reusable functions for directional movement, speed 

control, and braking. Sensor input is managed by sharp_sensor.py, which converts analog 

distance data into usable values using the ADS1115 ADC over I2C. External systems such as the 

Pololu Maestro are triggered through maestro_module.py, enabling the activation of cleaning 

routines or other subassemblies without interfering with the rover’s primary control flow. 

The user interface layer is powered by a Flask server defined in app.py. This server 

renders several HTML pages (home.html, manual.html, mode.html, etc.) and provides endpoints 

for sending commands, adjusting speed, and retrieving system logs. Interaction is supported by 

JavaScript, with joystick.js translating user input from a virtual joystick into movement 

commands. These commands are sent to the backend and processed in near real time. 

A local SQLite database serves as the event logging system. The logger.py module writes 

time-stamped logs categorized by level (INFO, WARNING, ALERT), and the dashboard 

displays them through dynamically rendered templates like index.html and log_table.html. This 

logging system operates independently of the main control flow, ensuring that diagnostics and 

event tracking remain functional even during high-load operations. 

The entire codebase is structured to allow new modules or hardware to be added with 

minimal disruption. Each functional block is designed to operate independently, with 

communication handled through shared memory, modular imports, and clean interface 

boundaries. This architecture makes the Astraeus software system not only functional and 

reliable, but also maintainable and scalable for future development. 

3.4.2 Main Execution and Control Logic 

The core runtime of the Astraeus rover is governed by two primary scripts: start_all.py and 

main.py. These files coordinate how the system boots, how control is shared between manual 

and autonomous modes, and how commands are interpreted and executed in real-time. 
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start_all.py – System Bootstrapper 

The start_all.py script serves as the system’s bootstrapper. It uses Python’s multiprocessing 

module to simultaneously launch two independent processes: the Flask-based user interface and 

the rover’s main control loop. 

 

 

 

Figure 51. Shared dictionary setup in start_all.py for inter-process communication 

 

This shared dictionary is initialized once and passed to both processes. It holds the 

current drive command, speed setting, operation mode (manual or autonomous), and any selected 

task. This architecture ensures synchronized communication between the web interface (app.py) 

and the main control logic (main.py), even though they run independently. 

The processes are launched as follows: 

 

 

Figure 52. Dual-process launch for Flask and control loop in start_all.py 

 

This structure ensures that both the control system and the web server are live from the 

moment the program starts. If either process terminates, the other will continue to run unless 

explicitly terminated. 
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main.py – Control Decision Loop 

The main.py file contains the central control loop that continuously checks the shared state to 

determine the rover’s operational mode and execute corresponding logic. The entry point is the 

main_loop() function. 

 

 

Figure 53. Main control loop in main.py handling mode-based task delegation 

 

Every 200 milliseconds, the loop polls the current mode (manual or autonomous) and 

performs the appropriate action. This mode is set by the Flask interface and accessed through 

shared memory via command_center.py. 

 

Manual Mode Handling 

In manual mode, the handle manual() function reads the current command and speed from the 

shared dictionary: 

 

Figure 54. Manual command and speed retrieval from shared memory in main.py 

 

Depending on the command received—such as movement instructions (forward, left, 

stop), alignment requests (align1, align2), or cleaning sequences (seq1, seq2), the appropriate 
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control routine is triggered. Once executed, the command is cleared to prevent it from being 

repeated. 

 

Autonomous Mode Handling 

In autonomous mode, the handle_autonomy() function checks whether the system is already 

running a task. If idle and a new task is detected in the shared memory, it is passed into the 

run_autonomy() function. 

 

 

Figure 55. Task check and autonomous execution trigger in main.py 

 

This structure ensures that only one task is executed at a time, and that manual overrides 

are ignored while autonomous functions are active. 

 

Shared Memory and Command Routing 

The command_center.py module abstracts access to the shared dictionary, allowing all scripts to 

interact with shared state in a clean and controlled manner. 

 

 

Figure 56. Command access functions in command_center.py using shared memory 

 

This modular setup makes it easy to route and isolate data between components, whether 

it’s setting a drive command from the web interface or reading a selected cleaning task from 

within the control loop. 
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Coordination and Isolation 

The multiprocessing architecture ensures fault isolation between the interface and control logic. 

The Flask server can be restarted independently of the control system, and commands are 

buffered in shared memory to prevent missed instructions. This separation also simplifies 

debugging, as issues in one process do not halt the entire system. 

This dual-process structure forms the foundation of the Astraeus software system. It 

ensures responsiveness to user input, real-time execution of control routines, and a clean 

separation between logic and interface, all while remaining lightweight and flexible enough to 

run on a Raspberry Pi 3. 

3.4.3 Manual Control System 

The manual control system provides a real-time interface for users to directly operate the 

Astraeus rover using a web dashboard. This system was built with one key design principle in 

mind: full containment. No external hosting services, scripts, or cloud-based dependencies are 

required to operate the system. Everything is served locally from the onboard Flask server, 

including the HTML frontend, CSS styling, JavaScript logic, and virtual joystick controls. This 

architecture ensures the rover can function reliably even in isolated environments without 

internet access. 

 

Flask Server Architecture 

The Flask server defined in app.py is responsible for serving the manual control interface and 

handling incoming HTTP POST requests. It exposes several key endpoints that allow the user to 

send movement commands, adjust motor speed, switch modes, and access other control 

functions. 

One of the core endpoints is /manual/command, which receives movement instructions 

from the web interface and places them into shared memory: 
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Figure 57. Route in app.py to receive manual movement commands. 

 

This command is then picked up by the main loop in main.py when the system is in 

manual mode, allowing real-time execution of user input. The use of shared memory ensures that 

command state remains synchronized between the Flask process and the control loop process. 

 

Speed Adjustment Endpoint 

In addition to directional movement, the operator can adjust motor speed using a slider interface. 

This input is handled via the /manual/speed route: 

 

 

Figure 58. Speed update route in app.py for manual mode. 

This allows the user to tailor responsiveness of the rover to match surface conditions or 

task sensitivity. The updated speed value is stored in shared memory and applied to all future 

movement commands until it is changed again. 

 

Local Hosting of Joystick Library 

A major goal in the development of this system was to ensure full local functionality, even 

without an internet connection. As part of that goal, the joystick interface was implemented using 
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the open-source nipplejs library, but instead of loading it from an external CDN, the full library 

was downloaded and stored locally in the project’s static directory. This guarantees that the 

virtual joystick will load and function correctly regardless of internet access. 

The script is included in the HTML as follows: 

 

Figure 59. Local inclusion of nipplejs in the HTML interface. 

This ensures that the joystick logic is served directly from the Raspberry Pi running the 

Flask server, further reinforcing the autonomy and self-reliance of the rover system. 

 

Joystick Input Handling 

The virtual joystick is defined and configured in joystick.js, which continuously monitors input 

direction and magnitude. It calculates a command string such as "forward", "backward", "left", 

or "right" and sends it to the backend through a fetch request. This system ensures smooth 

transitions and responsiveness, rather than relying on discrete button presses. 

 

 

Figure 60. JavaScript function sending movement commands to Flask. 

 

While the joystick is being held, the script continuously sends commands to the backend every 

few milliseconds. When the joystick is released, a "stop" command is sent, halting movement 

immediately. 

This behavior ensures responsive manual control while also allowing the user to make 

precise adjustments. Any delay or packet loss is minimized by the fact that all communication 

occurs on the local network and within a single device in most use cases. 
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Mode Switching 

Mode control is handled via another route, /set_mode, which allows the operator to toggle 

between manual and autonomous modes. The selected mode is written to shared memory and 

governs how the control loop in main.py behaves. 

 

Figure 61. Mode selection route in app.py. 

 

When manual mode is selected, the main loop immediately begins polling for joystick 

commands and speed updates, while pausing any autonomous tasks or tag-following logic. 

Real-Time Responsiveness and Loop Timing 

Due to the lightweight design and use of local memory, the time between joystick input 

and motor movement is minimal. The control loop runs on a 200 ms delay, and the joystick 

sends continuous updates while active. This enables smooth, responsive handling, even during 

fine control tasks such as alignment or obstacle navigation in manual mode. 

This architecture ensures that the manual control system is not only functional and 

responsive but also completely self-sufficient. All frontend and backend elements are hosted 

internally, making the system portable, reliable, and robust in offline or field environments. 

3.4.4 Autonomous Navigation and Tag Alignment 

The autonomous behavior of the Astraeus rover is coordinated through two core modules: 

autonomy.py and visual_module.py. These scripts work together to manage visual tag tracking, 

alignment, and stage transitions within a cleaning sequence. Tags are used solely for tracking and 

alignment, not for task identification. The system executes one task at a time and uses visual 
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feedback to precisely position itself before engaging cleaning actions or repositioning 

maneuvers. 

 

Task Detection and Execution 

Autonomous mode is activated by selecting a task from the web interface and switching the 

mode to "autonomous". When this happens, main.py checks the shared memory for a queued 

task and launches the control flow by calling run_autonomy(task) from autonomy.py. 

 

 

Figure 62. main.py triggers run_autonomy() when a task is detected. 

Each task represents a complete sequence such as aligning to a panel, cleaning it, and 

repositioning. Tag IDs (e.g., Tag 2 for Panel 1, Tag 3 for Panel 2) are associated with alignment 

only, not for identifying which task to perform. 

 

AprilTag Detection Using HuskyLens 

The rover uses a HuskyLens camera for detecting AprilTags via I2C. The visual_module.py 

module interfaces with the HuskyLens using the HuskyLensLibrary. The function 

get_tag_data(tag_id) requests all visible tags, scans for a specific ID, and returns its position if 

found. 
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Figure 63. Detection and buffering of April Tag data in visual_module.py. 

This positional data is stored in a tag-specific rolling buffer and smoothed before being 

used to determine adjustments. 

 

Tag Data Smoothing 

To ensure steady and jitter-free feedback, visual_module.py uses a simple averaging function 

over the last five readings for each tag. This minimizes unwanted corrections from noisy data. 

To calculate the smoothed value of each coordinate (e.g., 𝑥, y, width, or height), a simple 

moving average is applied over the last 𝑛 readings. The formula is defined as: 

 

�̅� =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 

Where: 

• �̅� is the smoothed (averaged) value, 

• 𝑥𝑖 is the 𝑖𝑡ℎ recorded value, 

• 𝑛 is the total number of recent readings (in this case, 𝑛 = 5). 
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Figure 64. Smoothed average output of tag data to stabilize alignment. 

Approaching the Solar Panel – drive_until_tag_detected() 

The autonomous navigation process begins with the rover executing the 

drive_until_tag_detected() function. The primary objective of this function is to bring the rover 

within a usable alignment range of a solar panel, where AprilTag detection is stable, and 

proximity is close enough to begin fine adjustments. This function acts as the entry point to the 

full autonomous task pipeline. 

At the start of the routine, the rover rotates slowly in place until it detects Tag 1, which 

serves as the approach marker for solar panel tracking. Once Tag 1 is found and its width 

exceeds a small threshold (indicating it's visible but still distant), the rover begins driving 

forward. As it moves, it continually checks for the presence of the target panel tag (either Tag 2 

or Tag 3 depending on the selected task). 

The rover prioritizes transitioning from Tag 1 to the actual panel tag as soon as it is seen. 

Once the target panel tag becomes visible and passes a defined minimum width (indicating the 

rover is within reasonable tracking range), forward motion stops and alignment can begin. 

This process includes several built-in fail-safes: 

• If the target tag is not seen within 12 seconds, the rover stops and logs a timeout event. 

• If no tag is visible for 6 seconds during approach, the rover exits and returns False. 

• If the rover’s IR sensors report that it is already too close to the panel, the function will 

not proceed further to avoid collision. 
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The loop continuously evaluates these visual and distance conditions to determine if it's 

appropriate to transition into alignment. 

This function plays a critical role in the autonomy logic: 

• It serves as a search and approach phase, ensuring the panel tag is located from a wide 

angle. 

• It guarantees the rover is in an optimal starting position for alignment, facing the tag 

head-on and within both visual and IR range. 

Once drive_until_tag_detected() exits successfully, it returns True, signaling that the rover is 

now ready for precise alignment using the alignment_sequence() function. The full 

implementation of this function can be found in Appendix H.3. 

 

Alignment Process – alignment_sequence(tag_id) 

Once the rover is in close proximity to the solar panel, the alignment_sequence(tag_id) function 

is called to perform precise orientation and positioning. This function is responsible for centering 

the rover directly in front of the panel using both visual and IR sensor feedback. The alignment 

logic operates in a continuous loop, reading smoothed AprilTag data from the camera (including 

the tag’s x-position and width), along with distance values from both the left and right IR 

sensors. These inputs are analyzed together to determine if the rover is centered horizontally, 

close enough to the panel, or needs to back up and retry. 

The alignment strategy is based on a staged controller. If the tag is visible but offset from 

the horizontal center of the frame (162 pixels), the rover turns in place using asymmetric motor 

speeds to bring it back on course. When the tag is centered and the rover is not yet too close, it 

slowly advances forward. As the rover gets closer, the tag width increases, and if it exceeds a set 

threshold, or if the IR sensors indicate the rover is less than ~17 cm away—the system will 

reverse slightly and retry the alignment. The alignment is only considered successful when the 

rover holds the correct position (tag centered, distance matched, and tag stable) for at least two 

continuous seconds. 

To protect against failure, the routine allows up to three alignment attempts. If the tag 

disappears or the rover is misaligned repeatedly, it will back out and try again. After three failed 

attempts, the function exits and logs a failure condition. On success, the rover stops all 
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movement and returns control to the main task sequence, now correctly positioned to begin 

cleaning. 

This alignment stage is essential to ensure that the cleaning hardware can operate 

reliably. Without accurate alignment, the brush or arm mechanisms may miss the panel entirely 

or apply uneven pressure. By combining real-time camera feedback with distance sensing and 

logic for retries, alignment_sequence() ensures that the rover only proceeds when it's in a 

confirmed optimal position. The full implementation of this function can be found in Appendix 

H.3. 

 

Cleaning and Return-to-Home Behavior 

After a successful alignment, the rover transitions to the cleaning phase. At this point, it is 

correctly positioned in front of the solar panel, and the autonomous logic calls a specific cleaning 

sequence using trigger_sequence() and run_cleaner(). These functions interact with the Maestro 

servo controller via maestro_module.py, sending predefined commands that initiate motion of 

the cleaning mechanism—typically a brush or arm. The sequence includes a brief delay, then 

activates the cleaning motor at a set speed for a fixed duration (40 seconds in the current 

configuration). Once complete, the system stops the cleaning motor and proceeds to the next 

stage. 

After cleaning, the rover must reposition itself. For tasks involving only one panel (such 

as "panel1" or "panel2"), the rover calls the return_home() function. This function initiates a 

180-degree turn using timed motor commands, then begins searching for Tag 4, which represents 

the home base. Once Tag 4 is detected, the rover switches to the follow_tag(tag_id=4) routine to 

track and approach the tag. This function uses real-time tag data to dynamically adjust motor 

speeds, keeping the rover aligned with the tag's center while driving forward. 

The tag-following continues until the tag width exceeds a predefined threshold, indicating 

that the rover is close enough to stop. Once within range, the rover stops all movement, ending 

the autonomous task. 

This structured sequence, cleaning followed by return-to-home, ensures the rover resets to a 

known state after each operation. It also improves usability by positioning the rover in an 

accessible location for recharge, maintenance, or manual control. The logic also avoids dead 
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ends by using tag-based homing instead of hardcoded paths, making the return phase more 

robust and environment-aware. 

The implementation of these post-alignment behaviors can be found in Appendix H.3. 

 

 

Figure 65. Task sequence for "panel1" in autonomy.py, showing tag detection and alignment 

steps, with fallback to manual mode if either stage fails. 

This modular design allows each stage to be tested independently and updated without affecting 

the others. 

3.4.5 Motor and Movement Control 

The movement system of the Astraeus rover is built around a simple but effective abstraction of 

PWM-based motor control. Each of the drive motors is wired to a Pololu VNH5019 motor 

driver, which receives directional and speed commands via the Raspberry Pi’s GPIO pins. The 

motors.py module contains all logic necessary to control these motors, starting from individual 

motor movement up to coordinated drivetrain commands. 
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Core Motor Control 

At the heart of the system is the _set_single_motor() function. This function accepts a motor 

object, its corresponding PWM output device, and a speed value between -100 and 100. Positive 

values make the motor spin forward, negative values spin it in reverse, and a value of 0 stops the 

motor entirely. The PWM signal is scaled based on the absolute value of the speed input, and the 

direction logic is handled through the gpiozero library’s .forward() and .backward() methods. 

 

 

Figure 66. _set_single_motor() applies a direction and PWM value based on the requested 

speed. 

This modular structure allows for highly reusable motor control logic. Whether the 

command is for a single wheel, both drive motors, or the cleaning motor, they all pass through 

this same function. 

 

Manual Mode Movement 

In manual mode, movement commands are received from the web interface via joystick input. 

These commands are passed to the send_drive_command(cmd, speed) function in motors.py, 

which interprets them and calls set_motor_speed(left, right) with appropriate values. The 
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available string-based commands include “forward,” “backward,” “left,” “right,” as well as 

diagonal and curved options like “forward_left” or “backward_right.” 

 

 

Figure 67. Centralized drive command routing in motors.py for manual input handling. 

This abstraction ensures that all manual controls rely on the same low-level speed 

functions, keeping motor behavior predictable and easy to debug. 

 

Autonomous Mode Usage 

In autonomous mode, send_drive_command() is not used. Instead, functions like 

set_motor_speed(left, right) are called directly to achieve precise, frame-by-frame adjustments. 

For example, while aligning to a tag, the system calculates the offset between the tag’s position 

and the center of the frame and converts that into an adjustment factor. The adjusted speeds are 

then passed directly to set_motor_speed(): 
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Figure 68. Fine-grained motor control in autonomous tag tracking. 

This approach gives the autonomy system precise control over rover movement, while 

still reusing the exact same motor logic as manual mode. It allows for gradual turns, course 

corrections, and safe braking behavior, without any need to redefine how motors are controlled. 

3.4.6 Sensor Integration and Obstacle Detection 

To enable short-range obstacle detection, the Astraeus rover utilizes two Sharp analog infrared 

distance sensors, one positioned on the left and the other on the right front edge of the chassis. 

These analog signals are read using the ADS1115 16-bit ADC over the I²C bus, with the 

integration logic handled entirely in sharp_sensor.py. The system continuously monitors these 

sensors to prevent collisions and supports both visual guidance and physical proximity 

safeguards during autonomous operation. 

The core of the conversion process involves reading the raw voltage from each sensor 

and converting that to distance using a calibrated mathematical formula. This formula accounts 

for the non-linear response of the Sharp IR sensor and outputs a usable approximation in 

centimeters. Voltages below a certain threshold are considered “out of range,” returning infinity 

to signal no nearby obstacle. 
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Figure 69. Voltage-to-distance conversion used to interpret raw Sharp sensor readings. 

To stabilize the data and reduce the effect of transient fluctuations, the module employs a 

two-tiered smoothing approach. First, each new distance reading is added to a buffer (deque) of 

the last 10 values, from which a running average is computed. Then, this average is passed 

through an exponential moving average (EMA) filter, which gives more weight to recent 

readings while still retaining the influence of past values. The result is a smoothed, real-time 

distance output that updates predictably and responsively. 

 

 

Figure 70. Exponential moving average (EMA) for smoothing noisy distance data. 

 

These final, filtered readings are made available via the get_smoothed_distances() 

function, which is frequently called within autonomy.py, especially during tag alignment 

routines. The IR sensors provide a physical check that complements visual detection, ensuring 

alignment doesn't proceed unless the rover is at a safe and effective cleaning distance. 

For obstacle detection, the function is_obstacle_detected() compares the smoothed IR 

values to a defined threshold (typically 40 cm). If either sensor detects an object within that 

range, an obstacle is flagged. This mechanism is further expanded in the 

emergency_stop_check() function, which acts as a safety supervisor. When an obstacle is 

confirmed and no recent cooldown is active, this function stops the motors, logs a warning, and 

waits five seconds before reevaluating the environment. If the obstacle is still present after 20 

seconds, the system logs an alert and remains halted. 
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Figure 71. Emergency stop routine triggered when a nearby object is detected. 

 

These safeguards are particularly important during autonomous routines like 

alignment_sequence(), where the rover moves closer to a solar panel using visual cues. If visual 

alignment appears successful but the IR sensors disagree, the system will prioritize safety and 

back off to avoid impact. This layered logic makes the rover more resilient in unpredictable 

environments and enhances its ability to operate autonomously without requiring constant 

oversight. 

The complete implementation of this sensor integration and safety logic can be found in 

Appendix H.5. 

3.4.7 External Subsystem Control 

The Astraeus rover communicates with an external Pololu Maestro servo controller to operate its 

mechanical subsystems, such as activating a cleaning brush or lifting mechanism. To simplify 

this communication, a custom Python module named maestro_module.py was created. This 
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module serves as a lightweight interface between the Raspberry Pi and the Maestro via USB 

serial. 

At the core of the module is the trigger_sequence(subroutine) function, which sends a 

predefined 4-byte serial command following Pololu’s official Serial Script Protocol. Each 

subroutine corresponds to a scripted behavior already programmed into the Maestro using its 

configuration software. 

 

 

Figure 72. Function to trigger subroutine execution on the Pololu Maestro via serial command. 

 

This modular setup allows autonomous routines, such as panel cleaning, to call external 

hardware sequences simply by invoking trigger_sequence() with the appropriate subroutine 

number. This keeps the Python-side logic clean and avoids embedding low-level serial 

commands throughout the main control flow. The complete implementation of this module can 

be found in Appendix H.7. 

3.4.8 Event Logging and Dashboard Interface 

The Astraeus rover features a fully self-contained web dashboard, hosted locally on the 

Raspberry Pi using Flask. This dashboard was designed as both a control and monitoring 

interface, offering real-time feedback and full interaction without needing internet access. All 

necessary files, including HTML, CSS, JavaScript, and logging logic, are stored and served from 

the Raspberry Pi itself. This design ensures the interface remains functional in remote locations 

and field deployments. 

Upon visiting the dashboard, users first land on the Home tab, which serves as the central 

landing point. From this screen, users are presented with system status information and 

navigational options. They can choose to enter either the Mode Selection tab or the Data Logging 

tab, depending on whether they wish to operate the rover or review system activity. 
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Figure 73. Home Tab here to show the starting point of the UI. 

 

Navigating to the Mode Selection tab, users can switch between manual and autonomous 

operation. In manual mode, the interface provides a full control panel featuring a locally hosted 

virtual joystick powered by the nipplejs library. By downloading and storing this library locally, 

the entire UI remains fully offline and self-reliant. The joystick input is sent to the Flask backend 

and used to issue real-time drive commands to the motors. This design ensures tight 

responsiveness and eliminates external dependencies.  
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Figure 74. Select Operation Mode screen. 

 

Figure 75. Manual Mode Control Interface with Joystick after this paragraph. 
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When users select Autonomous mode, they are prompted to choose from three available 

task options: clean Panel 1, clean Panel 2, or clean both panels sequentially. Once a selection is 

made, the rover executes the appropriate sequence autonomously using a combination of vision, 

sensors, and mechanical subsystems. The interface also indicates the active task and tracks 

progress, helping the user understand what the system is currently executing. 

 

Figure 76. Autonomy Mode Selection Screen here. 

 

Alternatively, users can access the Data Logging tab, which offers real-time insight into 

the rover’s operations. The system logs all notable events, such as tag detection, alignment 

status, obstacle warnings, and cleaning activation, into an SQLite database. These logs are 

categorized into INFO, WARNING, and ALERT levels and are displayed in an organized table. 

Users can filter by severity or view all entries, and the page updates automatically without 

requiring a manual refresh. 

The logging interface also includes a floating “new messages” notification. If the user is 

scrolled up in the log history and new messages are received, this banner appears at the bottom 
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of the screen to ensure the user is immediately informed of recent system activity. This feature 

keeps the operator aware of important updates without disrupting their current view. 

 

Figure 77. Full Log Table View (All Levels) 

 

 

Figure 78. Warnings Filtered View 
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Figure 79. Alerts Highlighted in Red 

 

Figure 80. Load Older Log Button, no new messages were available at the time so no “New 

Message” Pop up. 

 

On the backend, the logging system is managed by logger.py, which defines modular 

functions for logging events from any part of the codebase. These functions—log_info(), 

log_warning(), and log_alert(), record entries with timestamps and severity levels into the 

SQLite database (log.db). Logging occurs throughout the autonomy pipeline, sensor monitoring, 

safety routines, and even manual actions, making it easy to trace what the system did and when. 

Altogether, the dashboard and logging interface offer a robust and intuitive way to 

interact with the rover. Whether driving manually, launching an autonomous routine, or 

reviewing past events, the user is given full transparency and control in one integrated system. 

The implementation details of the Flask server and the event logging system can be found in 

Appendix H.8. 
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3.4.9 Safety and Fail-Safe Mechanisms 

Safety was a core consideration throughout the development of the Astraeus rover’s software. 

Given its autonomous capabilities and interaction with physical hardware, a layered system of 

fail-safes was designed to prevent collisions, halt unsafe operations, and recover gracefully from 

software or communication faults. 

The primary safety mechanism is the obstacle detection and emergency stop system, 

implemented through the sharp_sensor.py module. If either of the IR distance sensors detects an 

object within a predefined threshold, the emergency_stop_check() function halts all movement, 

logs a warning, and enforces a brief cooldown period. If the obstruction persists, the system logs 

an alert and remains in a safe, stopped state. This feature ensures that even if a visual tag is being 

followed, the rover will never collide with an unexpected object due to poor lighting or 

misalignment. 

Complementing this are timeout and retry systems scattered across key control modules. 

For example, in autonomy.py, if a tag is lost for too long or if alignment fails after three 

attempts, the system exits the task early and logs the failure. Similarly, the return-to-home 

sequence has built-in tag reacquisition attempts and timeout logic, preventing infinite loops or 

stalling behavior in the event of lost visual input. 

Another important safeguard is the cooldown timers on critical subsystems, like cleaning 

motors. These prevent the hardware from being reactivated too quickly after a cleaning sequence 

finishes, protecting both the motors and the battery from overuse or overheating. 

Despite these software safeguards, the system also includes a fully independent 

hardwired recovery mode via failsafe_manual.py. This standalone script bypasses the web 

interface entirely and provides direct terminal-based keyboard control of the rover. Once 

launched, it enables full manual driving using WASD-style key input and also provides one-key 

access to critical operations such as running cleaning sequences or initiating tag alignment 

routines. 
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Figure 81. Key-mapping dictionary in failsafe_manual.py that defines manual control input 

using standard keyboard keys. 

 

Using the terminal-based curses interface, the user receives printed feedback for each 

movement, action, or alignment attempt. If a crash occurs in the Flask web UI or if the Pi loses 

network connectivity, this script can still be run directly through SSH or a monitor and keyboard 

connection. It gives the operator the ability to safely navigate Astraeus out of an unsafe position 

or complete critical tasks when the main dashboard becomes unresponsive. 

By combining software-based detection, timeout and retry logic, and a fully isolated 

manual fallback script, the Astraeus control system is able to operate safely in autonomous mode 

while still offering full manual override in emergency conditions. These features ensure that the 

system remains responsive, resilient, and recoverable under a wide range of failure scenarios. 

The full failsafe control script can be found in Appendix H.11. 

3.4.10 Modular Design and Scalability 

The software architecture of the Astraeus rover was intentionally designed with modularity as a 

core principle, enabling isolated development, flexible debugging, and scalable integration for 

future hardware and features. Each major system component, such as motors, sensors, autonomy, 

visual tracking, logging, and web control, was separated into its own dedicated Python module. 

This allowed for parallel development of each subsystem and ensured that any changes or 

upgrades to one component would not interfere with the functionality of others. 

For example, motor control logic resides entirely in motors.py, which exposes clear 

functions like set_motor_speed() and stop_motors() that can be reused across both manual and 

autonomous routines. Similarly, sharp_sensor.py handles all aspects of analog IR input and 

smoothing, making it easy to swap in different sensor models or adjust filtering without 
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modifying core control logic. Vision-based tag detection is abstracted into visual_module.py, 

providing a clean interface for retrieving smoothed AprilTag data regardless of the underlying 

detection algorithm. 

The separation of UI logic into app.py also means that interface changes or feature 

additions, like new control buttons or tabs, can be made without affecting any of the movement 

or sensor logic. Meanwhile, the event logging system (logger.py) operates independently, 

capturing events from anywhere in the codebase without requiring deep integration. 

This clean separation of responsibilities makes the codebase highly extensible. If new 

hardware components are introduced, such as a GPS module, LIDAR, or additional actuators, 

they can be integrated by simply creating a new module or expanding existing ones. Because of 

the modular command structure, these additions would be able to hook into main.py or 

autonomy.py with minimal risk of breaking existing functionality. Similarly, new autonomy 

behaviors or task types can be added as additional functions without requiring a major overhaul 

of the control structure. 

The design also lends itself well to future software growth. Enhancements such as adding 

telemetry logging, ROS integration, or cloud-based dashboards could be implemented as entirely 

new modules or services that interact with the existing framework. This forward-thinking 

structure ensures that Astraeus is not only reliable in its current state, but also adaptable to future 

use cases, competition rules, or field conditions. 

Overall, the modular approach has made the codebase easier to manage, easier to test, 

and far more scalable, ensuring that Astraeus can continue to evolve without needing to be 

rewritten from the ground up. 
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4.1 Project Timeline 

4.2 Budget  

4.3 Health & Safety Considerations 

4.4 Ethical Considerations  

4.5 Environmental & Sustainability Considerations 

4.6 Sustainability Considerations 

Summary 

In this chapter, we will discuss the project timeline, proposed and actual budget, and the economic 

factors associated with the development of Astraeus. We will also address important non-technical 

issues such as environmental impact, health and safety concerns, ethical responsibilities, and 

sustainability. These considerations are vital to the success and integrity of any engineering 

project, and this chapter outlines how they were addressed during the design, construction, and 

testing phases of Astraeus. 
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4.1 Project Timeline 

The Development of Astraeus was guided by clearly defined schedules broken into two phases: Proposal 

Phase (Spring 2025) and Design Phase (Summer 2025). Each phase was structured to ensure the group 

met the weekly objectives through research, development, and testing. 

4.1.1 Proposal Phase (Spring 2025) 

This phase focused highly on conceptual development of the project, team responsibility and 

coordination, and CAD rendering. The spring semester weekly timeline is displayed in Table 14, 

 

Table 14. Spring Timeline 

Week Objective 

Week 1: 

1/6/25 - 1/13/25 

- Review syllabus and project expectations 

- Determine future meeting schedule 

- Draft 2–3 project ideas with flowcharts and descriptions 

Week 2: 

1/13/25 - 1/20/25 

- Discuss project ideas and website layout 

- Explore SEAR applications beyond space  

- Research semi-autonomous rover capabilities 

Week 3: 

1/20/25 - 1/27/25 

- Finalize project concept  

- Assign roles and start organizing requirements 

- Begin report draft and project naming 

- Contact Dr. Carbone and UCF Exolith Lab 

Week 4: 

1/27/25 - 2/3/25 

- Define mobility, autonomy, and communication constraints 

- Revise report to reflect updated project scope 

- Research brush system with static charge potential 

Week 5: 

2/3/25 - 2/10/25 

- Review report Chapters 1–4 

- Discuss component selection and power budget 

- Finalize solar panel for testing 

- Transfer documentation to report 

Week 6: 

2/10/25 - 2/17/25 

- Review Chapter 1 introduction and Chapter 2 integration 

- Align hardware/software functions with project goals 
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- Finalize budget draft and project timeline 

- Continue website updates 

Week 7: 

2/17/25 - 2/24/25 

- Refine Chapters 3 (budget/timeline) and 4 (future expansions) 

- Plan CAD responsibilities for chassis and rocker-bogie 

- Contact UCF for Martian soil 

- Begin CAD for chassis 

Week 8: 

2/24/25 - 3/3/25 

- Discuss Martian soil acquisition with Dr. Britt 

- Confirm testing plan at UCF Exolith Lab 

- Resize main frame CAD and refine block diagrams 

Week 9: 

3/3/25 - 3/10/25 

- Confirm contact with Parks Easter (via Dr. Britt) 

- Assign design responsibilities 

- Continue drafting Chapters 1 & 2 

- Refine system flowcharts 

Week 10: 

3/10/25 - 3/17/25 

- Focus on steady progress before spring break 

- Continue CAD development (arm, brush, frame) 

- Maintain consistent communication during the break 

Week 11: 

3/17/25 - 3/24/25 

- Maintain project momentum during break 

- Continue CAD work on main assemblies 

- Draft Chapters 3 & 4 of report 

- Modify and finalize flowcharts 

Week 12: 

3/24/25 - 3/31/25 

- Register for Lunabotics and confirm volunteer status 

- Finalize arm and drive system CAD 

- Begin brush mechanism CAD 

- Finalize report details and website review 

Week 13: 

3/31/25 - 4/7/25 

- Review revised flowcharts and presentation slides 

- Finalize formatting of report and website 

- Continue printing chassis components for final assembly 

Week 14: 

4/07/25 - 4/14/25 

- Practice and finalize report presentation 

- Assemble printed chassis components 
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The Corresponding Gantt chart on the next page is for spring displayed in Table 15. The expected design-phase Gantt chart created prior to the 

start of implementation is shown in Table 16 and served as a planning reference to guide weekly goals and deliverables following Senior Proposal.  

 

Table 15. Spring Gantt Chart (Proposal Phase) 
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Table 16. Senior Design (Proposed) Gannt Chart 
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4.1.2 Design Phase (Summer 2025) 

The Summer semester timeline is depicted in Table 17. The design semester focused on finalizing the 

software, assembling the finalized hardware, and troubleshooting. Table 18 depicts the timeline 

represented as Gantt chart. Following is the contributions table representing each group members’ 

contribution in Table 19. 

 

Table 17. Spring Timeline 

Week Objective 

Week 15: 

5/06/25 - 5/13/25 

- Begin final mechanical assembly 

- Review design-phase deliverables 

- Review roles and timeline ownership 

Week 16: 

5/13/25 - 5/20/25 

- Finalize mechanical structure 

- Power system wiring check 

- Start report Chapters 1–2 

Week 17: 

5/20/25 - 5/27/25 

- Begin obstacle avoidance programming 

- Verify Pi-to-driver communication 

- Continue documentation 

Week 18: 

5/27/25 - 6/3/25 

- Continue obstacle avoidance logic 

- Begin integrating AI object detection (HuskyLens) 

- Internal wiring validation 

Week 19: 

6/3/25 - 6/10/25 

- Refine object detection setup 

- Start path-to-panel logic 

- Continue report draft (Ch. 3–4) 

Week 20: 

6/10/25 - 6/17/25 

- Test AI object detection in real time 

- Tune path-planning algorithm 

- Flowchart and diagram updates 

Week 21: 

6/17/25 - 6/24/25 

- Begin alignment sequence programming 

- Start database setup for logging 

- Internal navigation test in mock setup 
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Week 22: 

6/24/25 - 7/1/25 

- Refine alignment and return-to-base logic 

- Field test partial navigation flow 

- Update testing procedures 

Week 23: 

7/1/25 - 7/8/25 

- Repair and reinforce left-side rocker 

- Rewire rover for modularity with labeled connectors 

- Replaced Raspberry Pi and verified drivers 

- Order new motor drivers 

- Connect and configure Maestro controller 

- Finalize navigation/system flowcharts 

Week 24: 

3/10/25 - 3/17/25 

- Complete system test of 5-axis arm 

- Confirm readiness for field testing 

- Finalize power budget with motor driver specs 

- Complete rough drafts of Chapters 1–5 

- Refine navigation verification procedures 

Week 25: 

7/15/25 - 7/22/25 

- Begin programming final autonomous logic  

- Start compiling results and debug logs 

- Continue field testing individual functions 

- Refine final report formatting 

Week 26: 

7/22/25 - 7/25/25 

- Finalize presentation 

- Rehearse presentation 

 

 

The weekly progress initially expected during the proposed design-phase timeline were closely 

followed with only minor setbacks, ensuring that major milestones such as system integration, field 

testing, and report completion were met on time. The Corresponding Gantt chart for the summer is 

displayed in Table 18. 
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Table 18. Spring Gantt Chart 
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The development of Project Astraeus required coordinated efforts across multiple 

technical domains, including mechanical design, electrical integration, and software 

development. To ensure efficiency and clear accountability, team responsibilities were divided 

based on each member’s strengths and contributions. The table below outlines the specific roles 

and tasks completed by each team member throughout the course of the project, as well as tasks 

that were completed collaboratively. This distribution highlights the individual contributions that 

made the successful integration and functionality of the system possible. 

 

Table 19. Contributions Table 

Team Member Responsibility 

Mark 

Design and implemented all electrical components and circuits 

Design CAD for main chassis to house components 

Design CAD for 5-axis cleaning arm 

3D-print and assemble the main frame and cleaning arm 

Finalize mechanical integration and fit-up 

Integrate electrical components into mechanical structure 

Code 5-axis cleaning arm movement sequences 

Pedro 

Design CAD for rocker-bogie suspension 

3D-print and assemble the components for rocker-bogie 

Code main control software and autonomous algorithm 

Create the Database and Web User Interface 

Integrate into Raspberry Pi, HuskyLens, and sensors 

Establish LAN communication for data transfer 

Group 

Write Report 

Refine System components 

Trouble-shoot system integrations 

Create and Practice Presentation 
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4.2 Budget 

The financial plan for the Astraeus project includes two separate charts: one outlining the projected costs 

and another detailing the actual expenses tracked throughout the development cycle. This distinction 

provides transparency between the planned budget and the final comprehensive budget.  

All purchases are categorized based on whether they were personally funded or provided by 

Valencia College, ensuring clear attribution of financial responsibility. Tables 20 and 21 present the 

proposed and final comprehensive budgets, respectively, and highlight where adjustments were made due 

to component replacements, testing needs, or integration challenges. 

 

Table 20. Proposed Budget 

ASTRAEUS Bill of Materials 

Line 

Item 
Part # Name Qty 

Price 

(USD) 
Total Supplier 

1 N/A V Slot Aluminum Extrusion 1 $59.99 $59.99 
Purchased/Provided by 

Valencia College 

2 N/A 
OVERTURE PETG Filament 

1.75mm 
4 $15.99 $63.96 

Purchased/Provided by 

Valencia College 

3 N/A HuskyLens AI Camera 1 $59.90 $59.90 
Purchased/Provided by 

Valencia College 

4 LM2596S 
DC-DC Voltage Regulator 

Power Module  
1 $12.49 $12.49 

Purchased/Provided by 

Valencia College 

5 12V30Ah 
12V 30Ah Lithium LiFePO4 

Battery 
1 $62.99 $62.99 

Purchased/Provided by 

Valencia College 

6 N/A 
Greartisan DC 12V 10RPM 

Gear Motor 
6 $14.99 $89.94 

Purchased/Provided by 

Valencia College 

7 VNH5019 Motor Driver Carrier 3 $29.95 $89.85 
Purchased/Provided by 

Valencia College 

8 GP2Y0A21YK0F 
Sharp IR Analog Distance 

Sensor (10-80cm) 
4 $8.59 $34.36 

Purchased/Provided by 

Valencia College 

9 1576 
99:1 Metal Gearmotor 25Dx54L 

mm HP 6V 
2 $28.95 $57.90 

Purchased/Provided by 

Valencia College 
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10 
ADS1115 

16-bit 4 Channel I2C ADC 

PGA Converter 
1 $15.99 $15.99 Purchased 

11 N/A 

4 Channels I2C Logic Level 

Converter Bi-Directional 3.3V-

5V Shifter 

1 $7.49 $7.49 Purchased 

12 1352 
Mini Maestro 12-Channel Servo 

Controller 
1 $32.95 $32.95 

Purchased/Provided by 

Valencia College 

13 DS3225MG 
25KG Full Metal Gear RC 

Servo (2 pack) 
1 $28.89 $28.89 

Purchased/Provided by 

Valencia College 

14 DS3218MG 
20KG Full Metal Gear RC 

Servo 
1 $13.59 $13.59 

Purchased/Provided by 

Valencia College 

15 MG996R 55g Metal Gear Servo (4 pack) 1 $16.68 $16.68 
Purchased/Provided by 

Valencia College 

16 
RPI3-MODB-

1GB 
Raspberry Pi 3B 1 $35.00 $35.00 

Purchased/Provided by 

Valencia College 

18 N/A 
4pcs 6mm Flange Coupling 

Connector 
2 $8.99 $17.98 

Purchased/Provided by 

Valencia College 

19 N/A 1400 Pcs M4 Nuts Washers Kit 1 $21.99 $21.99 
Purchased/Provided by 

Valencia College 

20 N/A 
100 Pieces 2020 Series M4 T 

Nuts 
1 $5.99 $5.99 

Purchased/Provided by 

Valencia College 

21 N/A 
600 Pcs M3 Screws 

Assortment Kit 
1 $8.99 $8.99 

Purchased/Provided by 

Valencia College 

22 N/A 
Rod End Bearings 5mm 

FemaleThread 
1 $8.99 $8.99 

Purchased/Provided by 

Valencia College 

23 B0DN6CY7JN ESP32-Cam (2 Pack) 1 $18.99 $18.99 
Purchased/Provided by 

Valencia College 

24 N/A 
M5 x 250mm Fully Threaded 

Rod 2Pcs 
1 $5.49 $5.49 

Purchased/Provided by 

Valencia College 

Total (USD): $764.90  
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Table 21. Final Comprehensive Budget 

ASTRAEUS Bill of Materials 

Line 

Item 
Part # Name Qty 

Price 

(USD) 
Total Supplier 

1 N/A V Slot Aluminum Extrusion 1 $59.99 $59.99 
Purchased/Provided by 

Valencia College 

2 N/A 
OVERTURE PETG Filament 

1.75mm 
8 $15.99 $127.92 

Purchased/Provided by 

Valencia College 

3 N/A HuskyLens AI Camera 1 $59.90 $59.90 
Purchased/Provided by 

Valencia College 

4 B0B825HRB9 
WWZMDiB Constant Current 

CC CV Buck Converter Module 
2 $9.99 $19.98 

Purchased/Provided by 

Valencia College 

5 12V30Ah 
12V 30Ah Lithium LiFePO4 

Battery 
1 $62.99 $62.99 

Purchased/Provided by 

Valencia College 

6 N/A 
Greartisan DC 12V 10RPM Gear 

Motor 
6 $14.99 $89.94 

Purchased/Provided by 

Valencia College 

7 VNH5019 Motor Driver Carrier 3 $29.95 $89.85 
Purchased/Provided by 

Valencia College 

8 GP2Y0A21YK0F 
Sharp IR Analog Distance Sensor 

(10-80cm) 
2 $8.59 $17.18 

Purchased/Provided by 

Valencia College 

9 N20-BT06 75:1 N20 Micro Gear Motor 2 $6.15 $12.30 
Purchased/Provided by 

Valencia College 

10 
ADS1115 

16-bit 4 Channel I2C ADC PGA 

Converter 
1 $15.99 $15.99 Purchased by Pedro 

11 N/A 

4 Channels I2C Logic Level 

Converter Bi-Directional 3.3V-

5V Shifter 

1 $7.49 $7.49 Purchased by Pedro 

12 1352 
Mini Maestro 12-Channel Servo 

Controller 
1 $32.95 $32.95 

Purchased/Provided by 

Valencia College 

13 DS3225MG 
25kg Full Metal Gear RC Servo 

(2 pack) 
2 $28.89 $57.78 

Purchased/Provided by 

Valencia College 
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14 DS3245SG 45kg Full Metal Gear RC Servo 2 $31.99 $63.98 
Purchased/Provided by 

Valencia College 

15 MG996R 55g Metal Gear Servo (4 pack) 1 $16.68 $16.68 
Purchased/Provided by 

Valencia College 

16 
RPI3-MODB-

1GB 
Raspberry Pi 3 Model B 1 $49.79 $49.79 

Purchased/Provided by 

Valencia College 

18 N/A 
4pcs 6mm Flange Coupling 

Connector 
4 $8.99 $35.96 

Purchased/Provided by 

Valencia College 

19 N/A 1400 Pcs M4 Nuts Washers Kit 2 $21.99 $43.98 
Purchased/Provided by 

Valencia College 

20 N/A 
100 Pieces 2020 Series M4 T 

Nuts 
1 $5.99 $5.99 

Purchased/Provided by 

Valencia College 

21 N/A 
600 Pcs M3 Screws Assortment 

Kit 
1 $8.99 $8.99 

Purchased/Provided by 

Valencia College 

22 N/A 
Rod End Bearings 5mm 

FemaleThread 
1 $8.99 $8.99 

Purchased/Provided by 

Valencia College 

23 
B0CDLKX842 

14 AWG, 2-conductor CCA wire  

(Red & Black) 100 ft 
1 $20.99 $20.99 Purchase by Mark 

24 B0BKGZRM8C 
18 AWG, 41-strand, low-voltage 

wire 100 ft 
1 $25.49 $25.49 Purchased by Mark 

25 Frienda-67892 Frienda Servo Extension Cables 2 $8.99 $17.98 Purchased by Mark 

26 GUB-6-20 

GUBCUB Terminal Block Kit (6 

Circuit, Duel-Row, 20A-30A, 

200V-450V) 

4 $10.49 $41.96 Purchased by Mark 

27  
282 Pieces Car Fuses Assortment 

Kit 
1 $13.99 $13.99  

28 N/A 
M5 x 250mm Fully Threaded 

Rod 2Pcs 
1 $5.49 $5.49 

Purchased/Provided by 

Valencia College 

Total (USD): $1,014.52  

 

While assembling and testing Astraeus, we encountered an issue with the original motor drivers. 

A wiring mistake during early integration caused the onboard MOSFETs to fail, requiring the repurchase 
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of replacement VNH5019 motor driver units. This unexpected event was the most significant deviation 

from the proposed budget. It also highlighted the importance of modular wiring and power isolation in 

future designs. The finalized comprehensive budget in Table 6 reflects all components required for a fully 

functional rover assuming no further hardware failures occur. If additional components were to fail during 

extended testing, the total cost could increase marginally beyond the current estimate. 

4.3 Environmental Aspects 

We minimized the environmental footprint of the Astraeus project by selecting low-power, energy-

efficient components and using modular, repairable designs to reduce waste. Materials used in the 

construction of the rover, such as PETG for 3D-printed parts, are recyclable and were used with minimal 

waste through optimized slicing and support reuse. 

 All electronic components, including batteries and any damaged parts, were disposed of 

following Valencia College’s electronic waste recycling procedures to prevent environmental 

contamination [16]. Additionally, the use of a solar panel for demonstration supports the project’s 

alignment with sustainable energy systems and environmentally conscious design [17]. 

4.4 Health and Safety Considerations 

We ensured that all electrical components and connections in Astraeus were securely enclosed or routed 

through protected cable paths to prevent accidental contact and electrical hazards. Wires were insulated 

and labeled, and fuses were used on the power supply lines to safeguard the system from short circuits or 

component failure. Each subsystem, including the motor drivers and servo controller, was mounted with 

sufficient clearance to prevent arcing and overheating. 

To minimize mechanical risk, the rover's moving components, especially the rocker-bogie 

suspension, robotic arm, and cleaning brush were evaluated for pinch points and collision hazards. The 

robotic arm’s range of motion and torque were analyzed to ensure that no crushing forces exceed 

acceptable safety thresholds during operation. All servos used for the arm are programmed to operate 

within safe speed and torque limits. The arm uses spring assistance to reduce motor strain and prevent 

sudden, high-force movements [18]. 

The cleaning mechanism, a rotating brush driven by a low-RPM motor, was tested to ensure that 

it would not produce hazardous contact force. Based on test observations, the system does not generate 

the threshold force of 150 N identified by OSHA and ISO standards as the limit for crush injuries. 

Similarly, the brush motor’s output falls below 80 N, which is the injury threshold commonly associated 

with class 1 finger injuries such as ring avulsion [19]. 
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To avoid injury during field testing, team members wore gloves, safety glasses, and closed-toe 

shoes, particularly when handling Martian regolith simulant or operating the rover on uneven terrain. 

Additionally, the rover’s AI vision and obstacle avoidance features help prevent unintended collisions 

during autonomous operation. By integrating mechanical safeguards, electrical protection, and 

responsible operating procedures, the Astraeus project was carried out with a strong commitment to 

health and safety at all stages of design, testing, and demonstration. 

4.5 Ethical Aspects 

Project Astraeus strictly adheres to the IEEE Code of Ethics throughout the development process by 

ensuring that the rover operates reliably, safely, and without posing harm to users, observers, or the 

testing environment [20]. We prioritized safety in both hardware design and testing protocols, 

implementing safeguards such as modular power wiring, obstacle detection, and low-force mechanisms. 

All team members maintained complete transparency in all performance reports, documentation, 

and presentations, clearly stating any limitations or challenges encountered during the project. All budget 

deviations, timeline adjustments, and hardware design changes were documented honestly, reflecting 

realistic expectations based on available resources and field test data. 

The team respected intellectual property and credited all external contributions appropriately, 

including academic references, vendor support, and faculty guidance. We actively sought, accepted, and 

applied honest criticism throughout the proposal, design, and testing phases. Revisions to the arm system, 

frame structure, and electrical layout were driven by both advisor input and peer feedback. 

Members of the Astraeus team worked collaboratively, treating one another fairly and 

professionally. At no point did the design or implementation of Astraeus violate the IEEE ethical 

commitment to avoid injury to others or their property. The project was conducted with a shared goal of 

promoting responsible engineering that aligns with real-world standards and classroom integrity. See 

Appendix G for a full list of specified IEEE ethical clauses followed throughout the project. 

4.6 Sustainability Considerations 

Sustainability was an important focus during the design and implementation of Astraeus, particularly 

regarding energy efficiency, modularity, and responsible component usage. The full system draws 

approximately 231.15 watts during peak operation, including the control platform, motors, robotic arm, 

and vision sensors. Power is supplied by a 12V 30Ah LiFePO₄ deep-cycle battery rated at 360 watt-hours, 

which offers high energy density, long rechargeability, and a lower environmental impact compared to 

traditional battery chemistries.  
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The use of rechargeable batteries significantly reduces electronic waste and environmental 

contamination. Components such as the Raspberry Pi 3 Model B, analog IR sensors, and micro gear 

motors were selected based on their energy efficiency relative to performance requirements. The robotic 

arm was carefully designed using servo motors that provide the necessary torque without drawing excess 

current. Combined with modular wiring and distributed fusing, the power system promotes safe, efficient 

energy use and simplifies repairs. 

All motion and control algorithms were programmed to minimize unnecessary activity. Obstacle 

avoidance, solar panel alignment, and cleaning sequences were optimized to reduce energy consumption 

during autonomous operation. The brush system activates only when proper alignment has been achieved, 

which conserves energy and limits wear on components. 

The modular mechanical design of Astraeus supports long-term sustainability. Each major 

subsystem, including the drive assembly, robotic arm, vision module, and power wiring, is designed for 

individual serviceability. This enables future teams to reuse or replace components without discarding the 

entire system. Additionally, the documentation and control structure created for Astraeus can serve as a 

foundation for future educational projects, further extending the utility and life span of the system. 
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Chapter 5 Conclusion 
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5.1 Summary and Conclusion 

5.2 Suggestions for future work 

Summary 

 

This chapter provides a summary of the Astraeus project, highlighting the design 

objectives, development process, and key testing results. It evaluates the performance 

of major subsystems, including the robotic arm and cleaning mechanism, and discusses 

how the final prototype met its engineering requirements. The chapter concludes with 

observations on project limitations and recommendations for future improvements. 

 

 

 

 

 

 

 

 



 116  
 

5.1 Summary and Conclusion 

The Astraeus prototype was developed to demonstrate the feasibility of a fully autonomous solar 

panel cleaning rover capable of supporting long-duration missions in extraterrestrial 

environments. Designed around a modular aluminum chassis, Astraeus integrated a rocker-bogie 

suspension for terrain navigation, a five-axis robotic arm equipped with a dual-rotation brush for 

cleaning, and a vision-based targeting system using the HuskyLens AI camera. Despite using 

non-space-grade components, the rover was engineered to simulate real-world functionality 

through subsystem integration, preprogrammed motion sequences, and internal data logging. 

Throughout its entire development, key engineering considerations were addressed, 

including structural adaptability, autonomous task execution, and system safety. Safety was 

addressed through passive design strategies, including low-speed actuation and robust 

mechanical stops to prevent overextension. In addition, sustainability and ethical engineering 

practices guided design decisions to ensure responsible use of materials and energy. The 

successful operation of the cleaning mechanism, combined with consistent navigation and 

performance logging, confirms Astraeus as a viable proof of concept for future off-world 

maintenance platforms. This chapter provides a comprehensive summary of the project’s 

outcomes, engineering achievements, and areas for future improvement. 

5.1.2 Robotic Arm Performance and Brush Results 

The robotic arm met its high-level engineering requirement of operating a variable speed 

cleaning brush with sufficient control to effectively remove dust and debris from solar panel 

surfaces. The dual-rotation brush was able to maintain a consistent speed throughout testing. 

Although the system did not include real-time pressure feedback, the combination of servo speed 

tuning and joint positioning allowed for stable brush contact with the panel surface. Under 

controlled conditions using measured quantities of Martian regolith simulant, the brush 

demonstrated reliable dust agitation and removal. The testing confirmed that cleaning was 

consistent at the defined operating speed, fulfilling the requirement to verify performance 

through repeatable results. 

Figures 48 and 49 present before-and-after comparison of the solar panel surface 

following the execution of a single brushing routine using Sequence 1 on both sides of the panel. 

In the initial state, a layer of fine particulate dust covered the panel, simulating Martian regolith 
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accumulation. After performing the full cleaning sequence, the robotic arm successfully agitated 

and swept the dust off the panel’s surface, with visible improvements in cleanliness both times. 

 

 

Figure 82. Panel Section 1 Cleaned 

 

 

Figure 83. Panel Section 2 Cleaned 

 

Sequence 1.1 was developed as an experimental routine to simulate a zigzag brushing 

pattern from the top to the bottom of the solar panel. This pattern was designed to provide 

broader coverage through directional shifting after each pass. Although implemented and 

included in the Maestro configuration file, it was not used in final testing due to mechanical 

limitations. The horizontal orientation of the brush in this sequence proved less effective, 

resulting in inconsistent bristle contact and reduced cleaning efficiency during lateral 

movements. 

This outcome revealed a constraint in the current five-axis arm configuration: the 

inability to rotate the brush along its own axis. Without axial rotation, the brush cannot maintain 

perpendicular contact when changing sweep direction. For future improvements, a sixth axis of 
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motion is recommended to allow the brush to rotate 90 degrees, enabling it to align properly with 

the panel surface throughout both vertical and horizontal passes. This would improve contact 

pressure, coverage consistency, and overall cleaning performance. Even though the rover has no 

dynamic alignment or real-time correction, the robotic arm’s brushing sequence proved capable 

of effectively agitating and displacing dust in a single pass. Dust was observed to lift from the 

surface and be swept downward off the panel’s edge, validating the system’s mechanical design 

and demonstrating the functionality of its cleaning mechanism under static control. 

The medium-level engineering requirement of documenting the cleaning process was also 

satisfied. Each cleaning cycle was automatically logged to the centralized database hub for 

Astraeus, allowing detailed tracking of when and how often brushing routines were executed. 

This logging system captured sequence IDs, timestamps, and operation status flags, providing a 

structured record for post-test review. In addition, before-and-after photographs were taken for 

each panel cleaned, enabling visual analysis of dust and dirt removal. Together, these data 

sources offered a complete picture of cleaning performance and operational reliability during the 

trial period. To see the data log, refer to Figure 77 located back in chapter 3. 

5.1.2 Autonomous Capabilities Results  

The autonomous navigation system of Astraeus successfully met all high- and medium-level 

engineering requirements related to mobility, obstacle avoidance, target recognition, and return-

to-base functionality. These capabilities were achieved through a combination of sensor-based 

logic, onboard April Tag visual markers, and internal data logging managed through the 

Raspberry Pi. 

To initiate the cleaning sequence, Astraeus autonomously traveled toward the solar panel 

using April Tag 1 as the primary navigation reference. Upon entering visual range of AprilTag 2, 

the system transitioned to an alignment routine. Astraeus adjusted its heading in response to the 

marker’s position and aligned itself with the panel to ensure proper brush positioning. This 

alignment was critical for the accuracy of the cleaning operation, and the rover was able to 

complete this routine without human assistance. 

After cleaning, Astraeus successfully executed a reverse maneuver followed by a 180-

degree turn. It then returned to the starting point using April Tag 3 as its final target. This 
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confirmed that the rover could return to its original base location autonomously, meeting the 

medium-level engineering requirement for return-to-base behavior. 

Obstacle avoidance was also validated during testing. Astraeus was able to detect and 

avoid large objects placed within its path. The proximity sensors accurately identified obstacles 

within a range of 40 cm and halted the rover’s motion to prevent collisions. This behavior was 

repeatable across multiple trials and demonstrated compliance with the high-level requirement 

for autonomous collision avoidance. 

Throughout the process, key navigation events were recorded using a local server hosted 

by the onboard Raspberry Pi. Events such as travel initiation, obstacle detection, tag recognition, 

alignment, cleaning start, cleaning completion, and return-to-base were each logged with 

corresponding timestamps and location tags. A full demonstration of Astraeus performing 

autonomous navigation, alignment, obstacle avoidance, cleaning, and return-to-base is available 

at the following link: https://youtube.com/shorts/Ls7SQvhasBQ 

During navigation testing, the Astraeus rover encountered some performance limitations 

with its vision system. As the rover increased in speed, the Huskylens struggled to process the 

rapidly changing visual field. The resulting motion blur made it difficult for the camera to 

maintain consistent recognition of April Tag markers. When an April Tag moved out of view, 

the system registered as lost and immediately triggered a safety protocol. This included logging 

the loss event and switching the rover into manual override mode to ensure it did not continue 

navigating without visual confirmation. This fail-safe behavior proved essential in preventing 

misalignment or unintended movement. The issue was traced to the limited resolution and frame 

rate of the HuskyLens AI camera. While higher-end cameras capable of real-time motion 

tracking were evaluated, their cost exceeded five hundred dollars and placed them outside the 

project’s budget. This limitation presents a clear opportunity for future system upgrades in next-

generation designs. 

5.2 Suggestions for Future Work 

While the current iteration of the Astraeus rover effectively demonstrates the ability to clean 

solar panels in Martian conditions, several enhancements could be made to improve its 

autonomy, efficiency, and adaptability. Future iterations of this project could integrate more 

https://youtube.com/shorts/Ls7SQvhasBQ
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advanced systems to optimize decision-making, power management, and operational longevity. 

The following improvements outline key areas for development. 

5.2.1 Solar Panel Efficiency Monitoring 

One of the main challenges in maintaining solar panels on Mars is determining when cleaning is 

necessary. Instead of operating on a fixed schedule, the rover could benefit from a system that 

actively measures the efficiency of each solar panel in real-time. This could be achieved by 

monitoring power output and comparing it to expected performance under current environmental 

conditions. A built-in algorithm could detect a drop in efficiency caused by dust accumulation 

and trigger a cleaning cycle only when needed. 

This approach would not only optimize power generation but also reduce unnecessary 

cleaning cycles, minimizing mechanical wear on the brush system and conserving the rover’s 

energy. Sensors such as pyranometers (to measure solar irradiance) or voltage and current 

sensors could be integrated to provide real-time efficiency data. This would allow the rover to 

prioritize cleaning based on the most affected panels rather than performing routine cleaning on 

all panels equally. 

5.2.2 Self-Docking Charging Station 

Currently, the rover operates on battery power, requiring periodic manual recharging. 

Implementing a self-docking charging station would significantly extend its operational time and 

autonomy by allowing the rover to recharge without human intervention. By incorporating an 

autonomous docking system, the rover could return to a designated charging station when battery 

levels reach a critical threshold. 

The docking system could include an alignment mechanism using Infrared Proximity 

Sensor to help the rover precisely position itself with charging connectors. Magnetic contacts or 

inductive charging could be explored to enable a seamless energy transfer process. This feature 

would be particularly valuable for long-duration missions where manual recharging is 

impractical. Additionally, an automated docking system could facilitate remote updates, 

diagnostics, and system recalibration without requiring direct access to the rover, improving 

long-term reliability and efficiency. 
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Appendix A – Email Correspondence  

In this appendix is the email sent from Dr. Andrea Boca about Solar Panel Positioning 

 

 

 

 

 

From: Dr. Andreea Boca, Solar Array Specialist, NASA Jet Propulsion Laboratory 

Sent: Thursday, May 8, 2025 – 1:03 PM 

To: Mark Figueroa mfigueroa88@valenciacollege.edu 

Cc: Pedro Cabrera pcabrera6@valenciacollege.edu; Dr. Debbie Hall dhall@valenciacollege.edu 

Subject: Re: ASTRAEUS Project Overview (Mark & Pedro) 

 

Hi Mark, 

 

I think assuming that the solar panels you clean are mounted at a 45-degree angle relative to the ground is 

as good a starting point as any. Panels in a solar farm on Mars could end up being mounted in pretty 

much any orientation, from parallel to the ground all the way to vertical, plus there is also be the 

possibility of sun tracking which would translate into a slowly variable angle depending on time of 

day/sol. Perhaps a future design iteration of your robot could make the cleaning process adaptable, i.e. 

work fine regardless of the angle the panels are mounted at, if feasible. But for now there’s nothing wrong 

with starting simple and planning to build up from there later on. Hope this helps, 

 

Andreea. 
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Appendix B – VNH5019 Datasheet  

In this appendix is the datasheet for operating the VNH5019 Motor Drivers. 
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Appendix C – Maestro Servo Controller User Guild 

In this appendix is the important documentation from the Maestro Servo Controller User Guild. 
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Appendix D – Solartech SPM030P-WP-F data sheet 

In this appendix is the important documentation for the Solartech SPM030P-WP-F data sheet. 
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Appendix E – GP2D120 Datasheet 

In this appendix is the important documentation from the GP2D120 IR sensors. 
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Appendix F – Raspberry Pi 3 Model B 

In this appendix is the important documentation from the Raspberry Pi 3 Model B datasheet. 
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Appendix G – Maestro Code Script 

The following appendix shows the Maestro configuration file showing serial settings, servo channel 

assignments, motion sequences, and onboard scripts used to automate the Astraeus robotic arm 

 

<!--Pololu Maestro servo controller settings file, http://www.pololu.com/catalog/product/1350--> 

<UscSettings version="1"> 

  <NeverSuspend>false</NeverSuspend> 

  <SerialMode>USB_DUAL_PORT</SerialMode> 

  <FixedBaudRate>9600</FixedBaudRate> 

  <SerialTimeout>0</SerialTimeout> 

  <EnableCrc>false</EnableCrc> 

  <SerialDeviceNumber>12</SerialDeviceNumber> 

  <SerialMiniSscOffset>0</SerialMiniSscOffset> 

  <Channels MiniMaestroServoPeriod="80000" ServoMultiplier="1"> 

    <!--Period = 20 ms--> 

    <!--Channel 0--> 

    <Channel name="Base" mode="Servo" min="3968" max="8000" homemode="Off" home="3968" 

speed="10" acceleration="10" neutral="6000" range="1905" /> 

    <!--Channel 1--> 

    <Channel name="Shoulder" mode="Servo" min="3968" max="8000" homemode="Off" home="3968" 

speed="5" acceleration="5" neutral="6000" range="1905" /> 

    <!--Channel 2--> 

    <Channel name="Elbow" mode="Servo" min="3968" max="8000" homemode="Off" home="3968" 

speed="10" acceleration="10" neutral="6000" range="1905" /> 

    <!--Channel 3--> 

    <Channel name="Wrist U/D" mode="Servo" min="3968" max="8000" homemode="Off" 

home="3968" speed="10" acceleration="10" neutral="6000" range="1905" /> 

    <!--Channel 4--> 

    <Channel name="Wrist L/R" mode="Servo" min="3968" max="8000" homemode="Off" 

home="3968" speed="10" acceleration="10" neutral="6000" range="1905" /> 

    <!--Channel 5--> 

    <Channel name="" mode="Servo" min="3968" max="8000" homemode="Off" home="3968" 

speed="0" acceleration="0" neutral="6000" range="1905" /> 

    <!--Channel 6--> 

    <Channel name="" mode="Servo" min="3968" max="8000" homemode="Off" home="3968" 

speed="0" acceleration="0" neutral="6000" range="1905" /> 

    <!--Channel 7--> 

    <Channel name="" mode="Servo" min="3968" max="8000" homemode="Off" home="3968" 

speed="0" acceleration="0" neutral="6000" range="1905" /> 

    <!--Channel 8--> 

    <Channel name="" mode="Servo" min="3968" max="8000" homemode="Off" home="3968" 

speed="0" acceleration="0" neutral="6000" range="1905" /> 

    <!--Channel 9--> 

    <Channel name="" mode="Servo" min="3968" max="8000" homemode="Off" home="3968" 

speed="0" acceleration="0" neutral="6000" range="1905" /> 

    <!--Channel 10--> 

    <Channel name="" mode="Servo" min="3968" max="8000" homemode="Off" home="3968" 

speed="0" acceleration="0" neutral="6000" range="1905" /> 
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    <!--Channel 11--> 

    <Channel name="" mode="Servo" min="3968" max="8000" homemode="Off" home="3968" 

speed="0" acceleration="0" neutral="6000" range="1905" /> 

  </Channels> 

  <Sequences> 

    <Sequence name="Sequence 0" useSpeedAndAcceleration="false"> 

      <Frame name="Initial Position" duration="500">6000 6000 7549 6000 6000 0 0 0 0 0 0 0 s 10 10 10 

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

    </Sequence> 

    <Sequence name="Sequence 1" useSpeedAndAcceleration="false"> 

      <Frame name="Initial Position" duration="2000">6000 6000 7549 6000 6000 0 0 0 0 0 0 0 s 10 5 10 

10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ElbowExtension" duration="3750">6000 6000 4202 6000 6000 0 0 0 0 0 0 0 s 10 10 

10 10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="WristAdjustment" duration="2000">6000 6000 4202 7060 6140 0 0 0 0 0 0 0 s 10 10 

10 10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="BaseRotation" duration="1000">6277 6000 4202 7060 6140 0 0 0 0 0 0 0 s 10 10 10 

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ArmExtension" duration="4000">6277 7745 4202 8000 6140 0 0 0 0 0 0 0 s 10 5 10 

10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="SweepDownL" duration="3000">6512 6903 6551 7393 6081 0 0 0 0 0 0 0 s 10 5 10 

10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="Center" duration="1000">5944 7060 6336 7021 5905 0 0 0 0 0 0 0 s 10 5 10 10 10 0 

0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="Raise For Clearance" duration="1500">5944 6277 6336 6355 5905 0 0 0 0 0 0 0 s 10 

5 10 10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="CenterElbowExtension" duration="2750">6000 6000 4202 6000 6000 0 0 0 0 0 0 0 s 

10 10 10 10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="CenterWristAdjustment" duration="2000">6000 6000 4202 7060 6000 0 0 0 0 0 0 0 s 

10 5 10 10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="CenterArmExtension" duration="4000">6000 7647 4202 7510 5827 0 0 0 0 0 0 0 s 

10 5 10 10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="CenterSweepDown" duration="3000">6000 6649 6884 7608 5827 0 0 0 0 0 0 0 s 10 

5 10 10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="Raise For Clearance" duration="1500">5944 6277 6336 6355 5905 0 0 0 0 0 0 0 s 10 

5 10 10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ElbowExtension2" duration="2750">6000 6000 4202 6000 6000 0 0 0 0 0 0 0 s 10 10 

10 10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="WristAdjustment2" duration="2000">6000 6000 4202 7060 5435 0 0 0 0 0 0 0 s 10 5 

10 10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="BaseRotation2" duration="1000">5592 6000 4202 7060 5435 0 0 0 0 0 0 0 s 10 5 10 

10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ArmExtension2" duration="4000">5592 7745 4202 7804 5396 0 0 0 0 0 0 0 s 10 5 10 

10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="SweepDownR" duration="3000">5592 6766 6590 7432 5435 0 0 0 0 0 0 0 s 10 5 10 

10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="Center" duration="1000">5944 7060 6336 7021 5905 0 0 0 0 0 0 0 s 10 5 10 10 10 0 

0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="Raise For Clearance" duration="1500">5944 6277 6336 6355 5905 0 0 0 0 0 0 0 s 10 

5 10 10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 
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      <Frame name="Initial Position" duration="2000">6000 6000 7549 6000 6000 0 0 0 0 0 0 0 s 10 5 10 

10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame> 

    </Sequence> 

    <Sequence name="Sequence 1.1" useSpeedAndAcceleration="false"> 

      <Frame name="Initial Position" duration="2000">6000 6000 7549 6000 6000 0 0 0 0 0 0 0 s 10 10 10 

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ElbowExtension" duration="3750">6000 6000 4202 6000 6000 0 0 0 0 0 0 0 s 10 10 

10 10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="WristAdjustment" duration="2000">6000 6000 4202 7060 6140 0 0 0 0 0 0 0 s 10 10 

10 10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="BaseRotation" duration="1000">6277 6000 4202 7060 6140 0 0 0 0 0 0 0 s 10 10 10 

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ArmExtension" duration="3000">6277 7745 4202 6982 6140 0 0 0 0 0 0 0 s 10 10 10 

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ShiftRight" duration="2000">5592 7745 4202 7060 5435 0 0 0 0 0 0 0 s 10 10 10 10 

10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ShiftDown" duration="1000">5592 7451 4809 7060 5435 0 0 0 0 0 0 0 s 10 10 10 10 

10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ShiftLeft" duration="2000">6512 7549 4809 6845 5964 0 0 0 0 0 0 0 s 10 10 10 10 

10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ShiftDown2" duration="1000">6297 7099 5396 6845 6062 0 0 0 0 0 0 0 s 10 10 10 

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ShiftRight2" duration="2000">5670 7119 5396 7021 5377 0 0 0 0 0 0 0 s 10 10 10 10 

10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ShiftDown3" duration="1000">5651 7080 5768 6962 5494 0 0 0 0 0 0 0 s 10 10 10 

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ShiftLeft2" duration="2000">6414 7021 5768 6962 6023 0 0 0 0 0 0 0 s 10 10 10 10 

10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ShiftDown4" duration="1000">6414 6825 6238 7158 6023 0 0 0 0 0 0 0 s 10 10 10 

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ShiftRight3" duration="2000">5475 7119 5749 6766 5377 0 0 0 0 0 0 0 s 10 10 10 10 

10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ShiftDown5" duration="1000">5475 6903 6297 6962 5318 0 0 0 0 0 0 0 s 10 10 10 

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="Shiftleft3" duration="2000">6590 6825 6297 6962 6179 0 0 0 0 0 0 0 s 10 10 10 10 

10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="Center" duration="1000">5905 6982 6453 7001 5651 0 0 0 0 0 0 0 s 10 10 10 10 10 0 

0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="ClearanceRaise" duration="2000">5905 6473 6453 6316 5651 0 0 0 0 0 0 0 s 10 10 

10 10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

      <Frame name="Initial Position" duration="2000">6000 6000 7549 6000 6000 0 0 0 0 0 0 0 s 10 10 10 

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame> 

    </Sequence> 

  </Sequences> 

  <Script ScriptDone="true">### Sequence subroutines: ### 

 

# Sequence 0 

sub Sequence_0 

  500 6000 6000 7549 6000 6000 0  

  0 0 0 0 0 0 frame_0..11 # Initial Position 

  return 
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# Sequence 1 

sub Sequence_1 

  2000 6000 6000 7549 6000 6000 0  

  0 0 0 0 0 0 frame_0..11 # Initial Position 

  3750 4202 frame_2 # ElbowExtension 

  2000 7060 6140 frame_3_4 # WristAdjustment 

  1000 6277 frame_0 # BaseRotation 

  4000 7745 8000 frame_1_3 # ArmExtension 

  3000 6512 6903 6551 7393 6081 frame_0..4 # SweepDownL 

  1000 5944 7060 6336 7021 5905 frame_0..4 # Center 

  1500 6277 6355 frame_1_3 # Raise For Clearance 

  2750 6000 6000 4202 6000 6000 frame_0..4 # CenterElbowExtension 

  2000 7060 frame_3 # CenterWristAdjustment 

  4000 7647 7510 5827 frame_1_3_4 # CenterArmExtension 

  3000 6649 6884 7608 frame_1..3 # CenterSweepDown 

  1500 5944 6277 6336 6355 5905 frame_0..4 # Raise For Clearance 

  2750 6000 6000 4202 6000 6000 frame_0..4 # ElbowExtension2 

  2000 7060 5435 frame_3_4 # WristAdjustment2 

  1000 5592 frame_0 # BaseRotation2 

  4000 7745 7804 5396 frame_1_3_4 # ArmExtension2 

  3000 6766 6590 7432 5435 frame_1..4 # SweepDownR 

  1000 5944 7060 6336 7021 5905 frame_0..4 # Center 

  1500 6277 6355 frame_1_3 # Raise For Clearance 

  2000 6000 6000 7549 6000 6000 frame_0..4 # Initial Position 

  return 

# Sequence 1.1 

sub Sequence_11 

  2000 6000 6000 7549 6000 6000 0  

  0 0 0 0 0 0 frame_0..11 # Initial Position 

  3750 4202 frame_2 # ElbowExtension 

  2000 7060 6140 frame_3_4 # WristAdjustment 

  1000 6277 frame_0 # BaseRotation 

  3000 7745 6982 frame_1_3 # ArmExtension 

  2000 5592 7060 5435 frame_0_3_4 # ShiftRight 

  1000 7451 4809 frame_1_2 # ShiftDown 

  2000 6512 7549 6845 5964 frame_0_1_3_4 # ShiftLeft 

  1000 6297 7099 5396 6062 frame_0..2_4 # ShiftDown2 

  2000 5670 7119 7021 5377 frame_0_1_3_4 # ShiftRight2 

  1000 5651 7080 5768 6962 5494 frame_0..4 # ShiftDown3 

  2000 6414 7021 6023 frame_0_1_4 # ShiftLeft2 

  1000 6825 6238 7158 frame_1..3 # ShiftDown4 

  2000 5475 7119 5749 6766 5377 frame_0..4 # ShiftRight3 

  1000 6903 6297 6962 5318 frame_1..4 # ShiftDown5 

  2000 6590 6825 6179 frame_0_1_4 # Shiftleft3 

  1000 5905 6982 6453 7001 5651 frame_0..4 # Center 

  2000 6473 6316 frame_1_3 # ClearanceRaise 

  2000 6000 6000 7549 6000 6000 frame_0..4 # Initial Position 

  return 

 

sub frame_0..11 

  11 servo 
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  10 servo 

  9 servo 

  8 servo 

  7 servo 

  6 servo 

  5 servo 

  4 servo 

  3 servo 

  2 servo 

  1 servo 

  0 servo 

  delay 

  return 

 

sub frame_2 

  2 servo 

  delay 

  return 

 

sub frame_3_4 

  4 servo 

  3 servo 

  delay 

  return 

 

sub frame_0 

  0 servo 

  delay 

  return 

 

sub frame_1_3 

  3 servo 

  1 servo 

  delay 

  return 

 

sub frame_0..4 

  4 servo 

  3 servo 

  2 servo 

  1 servo 

  0 servo 

  delay 

  return 

 

sub frame_3 

  3 servo 

  delay 

  return 

 

sub frame_1_3_4 
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  4 servo 

  3 servo 

  1 servo 

  delay 

  return 

 

sub frame_1..3 

  3 servo 

  2 servo 

  1 servo 

  delay 

  return 

 

sub frame_1..4 

  4 servo 

  3 servo 

  2 servo 

  1 servo 

  delay 

  return 

 

sub frame_0_3_4 

  4 servo 

  3 servo 

  0 servo 

  delay 

  return 

 

sub frame_1_2 

  2 servo 

  1 servo 

  delay 

  return 

 

sub frame_0_1_3_4 

  4 servo 

  3 servo 

  1 servo 

  0 servo 

  delay 

  return 

 

sub frame_0..2_4 

  4 servo 

  2 servo 

  1 servo 

  0 servo 

  delay 

  return 

 

sub frame_0_1_4 
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  4 servo 

  1 servo 

  0 servo 

  delay 

  return 

</Script> 

</UscSettings> 
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Appendix H – Astraeus Source Code 

The following appendix documents the comprehensive source code that Astraeus runs on. 

Appendix H.1 – start_all.py 

This script serves as the entry point for the system, initializing shared memory and launching 

both the Flask web server and the main control loop as separate processes using Python’s 

multiprocessing module. 

 

1 import multiprocessing 

2 import os 

3 import sys 

4 from multiprocessing import Process, Manager 

5  

6 # Path setup for dashboard access 

7 BASE_DIR = os.path.dirname(os.path.abspath(__file__)) 

8 DASHBOARD_DIR = os.path.join(BASE_DIR, "dashboard") 

9 sys.path.append(DASHBOARD_DIR) 

10  

11 #PROCESS TARGETS 

12 def run_flask(shared): 

13     from shared_state import set_shared 

14     set_shared(shared) 

15  

16     from app import app 

17     print("[BOOT] Flask process starting...", flush=True) 

18     app.run(host='0.0.0.0', port=5000, debug=False) 

19  

20 def run_main(shared): 

21     from shared_state import set_shared 

22     set_shared(shared) 

23  

24     from main import main_loop 

25     print("[BOOT] Main control loop starting...", flush=True) 

26     main_loop() 

27  

28 # MAIN RUNNER 

29 if __name__ == "__main__": 

30     multiprocessing.set_start_method("spawn", force=True) 

31  

32     # Initialize shared memory once here 

33     manager = Manager() 
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34     shared = manager.dict({ 

35         "command": None, 

36         "speed": 40, 

37         "mode": "idle", 

38         "task": None 

39     }) 

40  

41     print("[BOOT] Launching Flask and Main loop in parallel", flush=True) 

42  

43     p1 = Process(target=run_flask, args=(shared,)) 

44     p2 = Process(target=run_main, args=(shared,)) 

45  

46     p1.start() 

47     p2.start() 

48  

49     print("[BOOT] Both processes started", flush=True) 

50  

51     p1.join() 

52     p2.join() 

53  
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Appendix H.2 – main.py 

This file contains the main control loop for the system. It continuously checks the selected mode 

(manual or autonomous) and executes the appropriate behavior, including handling commands, 

triggering sequences, and running alignment or cleaning tasks. 

 

1 import os 

2 import sys 

3 import time 

4  

5 # Path setup to access dashboard utilities 

6 BASE_DIR = os.path.dirname(os.path.abspath(__file__)) 

7 DASHBOARD_DIR = os.path.join(BASE_DIR, "dashboard") 

8 sys.path.append(DASHBOARD_DIR) 

9  

10 # Shared state 

11 from command_center import get_command, get_speed, clear_command, get_task, 

clear_task, get_mode 

12 from maestro_module import trigger_sequence 

13 from autonomy import run_autonomy, autonomy_busy, alignment_sequence 

14 from logger import log_event, log_warning, log_alert 

15 import motors 

16 from motors import send_drive_command 

17  

18 #Manual Command Handling 

19 def handle_manual(): 

20     cmd = get_command() 

21     speed = get_speed() 

22  

23     if cmd: 

24         print(f"[MANUAL] Received command: {cmd} | Speed: {speed}%") 

25  

26         # special functions 

27         if cmd == "align1": 

28             log_event("[MANUAL] Aligning with Tag 2 (Panel 1)") 

29             success = alignment_sequence(2) 

30             if success: 

31                 log_event("[MANUAL] Alignment with Tag 2 successful") 

32             else: 

33                 log_warning("[MANUAL] Alignment with Tag 2 failed") 

34  

35         elif cmd == "align2": 

36             log_event("[MANUAL] Aligning with Tag 3 (Panel 2)") 

37             success = alignment_sequence(3) 
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38             if success: 

39                 log_event("[MANUAL] Alignment with Tag 3 successful") 

40             else: 

41                 log_warning("[MANUAL] Alignment with Tag 3 failed") 

42  

43         elif cmd == "seq1": 

44             log_event("Sequence 1 initiated. On standby for 40 seconds.") 

45             trigger_sequence(1) 

46             time.sleep(2) 

47             motors.run_cleaner(100) 

48             time.sleep(43) 

49             motors.stop_cleaner() 

50             time.sleep(4)  

51             print("[MANUAL] Sequence 1 complete.") 

52  

53         elif cmd == "seq2": 

54             log_event("Sequence 2 initiated. On standby for 60 seconds.") 

55             trigger_sequence(2) 

56             time.sleep(2) 

57             motors.run_cleaner(100) 

58             time.sleep(43) 

59             motors.stop_cleaner() 

60             time.sleep(4)  

61             print("[MANUAL] Sequence 2 complete.") 

62  

63         else: 

64             send_drive_command(cmd, speed) 

65  

66         clear_command() 

67  

68 #Autonomous Task Handling 

69 def handle_autonomy(): 

70     if autonomy_busy: 

71         return  #Already running 

72  

73     task = get_task() 

74     if task and task != "None": 

75         print(f"[AUTO] Starting task: {task}") 

76         run_autonomy(task) 

77         clear_task() 

78  

79 #Main Loop 

80 def main_loop(): 

81     print("MAIN LOOP is running!") 

82     last_mode = None 
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83  

84     while True: 

85         mode = get_mode() 

86  

87         if mode != last_mode: 

88             print(f"[MAIN] Mode switched to: {mode}") 

89             last_mode = mode 

90  

91         if mode == "manual": 

92             if not autonomy_busy: 

93                 handle_manual() 

94             else: 

95                 print("[MAIN] Ignored manual input — autonomy is active.") 

96  

97         elif mode == "autonomous": 

98             handle_autonomy() 

99  

100         time.sleep(0.2) 

101  

102 if __name__ == "__main__": 

103     motors.setup() 

104     main_loop() 
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Appendix H.3 – autonomy.py 

This module manages the autonomous behavior of the rover. It includes logic for driving toward 

and aligning with AprilTags, executing cleaning sequences, transitioning between panels, and 

returning home. It also includes fail-safes and emergency stop mechanisms to handle obstacles 

and vision loss during operation. 

 

1 import time 

2 from visual_module import get_tag_data 

3 from sharp_sensor import emergency_stop_check, get_smoothed_distances 

4 from maestro_module import trigger_sequence 

5 import motors 

6 from motors import run_cleaner, stop_cleaner 

7 from logger import log_event, log_warning, log_alert 

8 from command_center import set_mode 

9  

10 #configurable thresholds 

11 TAG4_STOP_WIDTH = 100 # Adjustable: real-world tested width to stop at 

home 

12 ALERT_INTERVAL = 10 # Seconds between lost tag alerts 

13 ALIGN_X_CENTER = 160 # Center of frame (x) 

14 ALIGN_TOLERANCE = 30 # Pixel tolerance for alignment 

15 ALIGN_WIDTH_THRESHOLD = 150    # Tag width threshold for closeness 

16 SHARP_TOLERANCE = 3           #cm diff between left and right sensors 

17 FORWARD_SPEED = 13 

18 ADJUST_SPEED_LOW = 9 

19 ADJUST_SPEED_HIGH = 13 

20 BACKOFF_SPEED = -20 

21 BACKOFF_DURATION = 0.5 

22 MIN_SAFE_DISTANCE_CM = 7 

23 MAX_TRACK_SPEED = 15 

24 CENTER_X = 160 

25 MAX_DEVIATION = 160  #Full frame width deviation from center = full 

steering effect 

26 MAX_TAG_SPEED = 15 

27  

28 # === Runtime flags === 

29 autonomy_busy = False 

30 _e_stop_enabled = False 

31 _last_alert_time = {}  #Track last alert time per tag_id 

32  

33 def log_alert_throttled(tag_id, msg): 

34     now = time.time() 
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35     if tag_id not in _last_alert_time or now - _last_alert_time[tag_id] >= 

ALERT_INTERVAL: 

36         log_alert(f"[ALERT] Tag {tag_id} lost: {msg}") 

37         _last_alert_time[tag_id] = now 

38  

39 def fail_and_switch_to_manual(reason): 

40     log_alert(f"[AUTO FAIL] {reason} - switching to manual mode.") 

41     motors.stop_motors() 

42     set_mode("manual") 

43  

44 def drive_until_tag_detected(primary_tag, target_tag, timeout=30): 

45     """ 

46     Drives toward `primary_tag` but switches to `target_tag` when seen. 

47     Includes grace period if tags are briefly lost before failing. 

48     """ 

49     print(f"[AUTO] Driving toward Tag {primary_tag}, watching for Tag 

{target_tag}...") 

50     last_seen_time = time.time() 

51     grace_period = 10  # Seconds to allow brief tag loss before fail 

52     base_speed = MAX_TAG_SPEED 

53     steer_aggression = 0.85  # More aggressive steering response 

54  

55     while True: 

56         if _e_stop_enabled: 

57             emergency_stop_check() 

58  

59         primary_data = get_tag_data(primary_tag) 

60         target_data = get_tag_data(target_tag) 

61  

62         # Target tag found? Switch now 

63         if target_data: 

64             print(f"[AUTO] Tag {target_tag} detected! Switching pursuit.") 

65             return True 

66  

67         #still following primary tag 

68         if primary_data: 

69             last_seen_time = time.time()  #reset loss timer 

70             x = primary_data['x'] 

71             error = x - CENTER_X 

72             correction = min(1.0, abs(error) / MAX_DEVIATION) 

73             adjustment = int(correction * base_speed * steer_aggression) 

74  

75             if error > 0: 

76                 left = base_speed - adjustment 

77                 right = base_speed + adjustment 
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78             else: 

79                 left = base_speed + adjustment 

80                 right = base_speed - adjustment 

81  

82             motors.set_motor_speed(left, right) 

83  

84         else: 

85             # Tag not visible — stop but don't fail immediately 

86             motors.stop_motors() 

87             time_since_seen = time.time() - last_seen_time 

88  

89             if time_since_seen >= grace_period: 

90                 log_warning(f"[AUTO] Tag not seen for 

{int(time_since_seen)}s... holding...") 

91             if time_since_seen >= timeout: 

92                 log_alert_throttled(target_tag, f"Timed out after 

{timeout}s without seeing any tag") 

93                 return False 

94  

95         time.sleep(0.1) 

96  

97 def drive_to_tag(tag_id, stop_at_width=None): 

98     print(f"[AUTO] Driving to Tag {tag_id}...") 

99      

100     while True: 

101         if _e_stop_enabled: 

102             emergency_stop_check() 

103  

104         data = get_tag_data(tag_id) 

105  

106         if data: 

107             x = data['x'] 

108             width = data['w'] 

109             print(f"[AUTO] Tag {tag_id} visible | X={x} W={width}") 

110  

111             if stop_at_width and width >= stop_at_width: 

112                 motors.stop_motors() 

113                 print(f"[AUTO] Tag {tag_id} width reached stop threshold 

({stop_at_width})") 

114                 return True 

115  

116             # Steering Logic 

117             error = x - CENTER_X  # + = too far right, - = too far left 

118             steer = max(-1.0, min(1.0, error / MAX_DEVIATION))  # 

normalize -1 to 1 



 162  
 

119             adjustment = int(steer * MAX_TRACK_SPEED * 0.6)  # scale 

effect (~60% max turn) 

120  

121             left_speed = MAX_TRACK_SPEED - adjustment 

122             right_speed = MAX_TRACK_SPEED + adjustment 

123  

124             # Clamp speeds 

125             left_speed = max(-100, min(100, left_speed)) 

126             right_speed = max(-100, min(100, right_speed)) 

127  

128             motors.set_motor_speed(left_speed, right_speed) 

129  

130         else: 

131             log_alert_throttled(tag_id, "Not visible during drive") 

132             motors.stop_motors() 

133  

134         time.sleep(0.1) 

135  

136 def alignment_sequence(tag_id): 

137     print(f"[AUTO] Starting alignment sequence with Tag {tag_id}...") 

138  

139     #tunable Parameters 

140     ALIGNMENT_DISTANCE_THRESHOLD = 40.0 

141     STOP_DISTANCE = 14.0 

142     MAX_REVERSE_ATTEMPTS = 3 

143     APPROACH_SPEED = 12 

144     BOOST_SPEED = 15 

145     TURN_FORCE = 1.4 

146  

147     X_TARGET = 162 

148     X_TOLERANCE = 30 

149     IR_DIFF_TOL = 5 

150     WIDTH_MIN = 160 

151     FINAL_HOLD_TIME = 2 

152  

153     # state Tracking 

154     lost_tag_start = None 

155     lost_attempts = 0 

156     reverse_attempts = 0 

157     TAG_LOST_GRACE = 5 

158     stable_start = None 

159  

160     while True: 

161         data = get_tag_data(tag_id) 

162  
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163         if not data: 

164             if not lost_tag_start: 

165                 lost_tag_start = time.time() 

166                 print("[AUTO] Tag temporarily lost. Starting grace 

timer...") 

167             elif time.time() - lost_tag_start > TAG_LOST_GRACE: 

168                 lost_attempts += 1 

169                 print(f"[AUTO] Tag not found. Reversing... (Attempt 

{lost_attempts})") 

170                 motors.set_motor_speed(-20, -20) 

171                 time.sleep(0.5) 

172                 motors.stop_motors() 

173                 lost_tag_start = None 

174                 if lost_attempts > 3: 

175                     log_alert(f"[AUTO FAIL] Could not complete alignment 

with Tag {tag_id}") 

176                     return False 

177             else: 

178                 motors.stop_motors() 

179                 time.sleep(0.1) 

180             continue 

181  

182         lost_tag_start = None 

183  

184         # sensor & Tag Data 

185         x = data['x'] 

186         width = data['w'] 

187         left_cm, right_cm = get_smoothed_distances() 

188         avg_ir = (left_cm + right_cm) / 2 

189         ir_diff = abs(left_cm - right_cm) 

190         x_error = abs(x - X_TARGET) 

191  

192         print(f"[ALIGN] X={x:.1f} W={width:.1f} IR_L={left_cm:.1f} 

IR_R={right_cm:.1f}") 

193  

194         #Final Success Check (Override Everything) 

195         if (x_error <= X_TOLERANCE and 

196             width >= WIDTH_MIN and 

197             ir_diff <= IR_DIFF_TOL and 

198             left_cm <= STOP_DISTANCE and 

199             right_cm <= STOP_DISTANCE): 

200              

201             motors.stop_motors() 

202             if not stable_start: 

203                 stable_start = time.time() 



 164  
 

204             elif time.time() - stable_start >= FINAL_HOLD_TIME: 

205                 print("[AUTO] Alignment + approach confirmed. Complete.") 

206                 log_event(f"[AUTO] Final alignment success with Tag 

{tag_id}") 

207                 return True 

208             else: 

209                 print("[AUTO] Holding to confirm alignment stability...") 

210             time.sleep(0.25) 

211             continue 

212         else: 

213             stable_start = None 

214  

215         #Case: TOO CLOSE + NOT ALIGNED 

216         if avg_ir < STOP_DISTANCE + 3 and x_error > X_TOLERANCE: 

217             if reverse_attempts < MAX_REVERSE_ATTEMPTS: 

218                 print("[RECOVERY] Too close and misaligned. Backing 

up...") 

219                 motors.set_motor_speed(-20, -20) 

220                 time.sleep(0.5) 

221                 motors.stop_motors() 

222                 reverse_attempts += 1 

223                 continue 

224             else: 

225                 log_alert("[AUTO FAIL] Cannot align due to close 

proximity.") 

226                 return False 

227  

228         # Case: FAR ENOUGH, DO FULL ALIGNMENT 

229         if avg_ir >= ALIGNMENT_DISTANCE_THRESHOLD: 

230             print("[STAGE 1] Long-range alignment in progress...") 

231             if x < X_TARGET - X_TOLERANCE: 

232                 motors.set_motor_speed(-int(BOOST_SPEED * TURN_FORCE), 

BOOST_SPEED) 

233             elif x > X_TARGET + X_TOLERANCE: 

234                 motors.set_motor_speed(BOOST_SPEED, -int(BOOST_SPEED * 

TURN_FORCE)) 

235             elif ir_diff > IR_DIFF_TOL: 

236                 if left_cm > right_cm: 

237                     motors.set_motor_speed(BOOST_SPEED - 2, BOOST_SPEED + 

2) 

238                 else: 

239                     motors.set_motor_speed(BOOST_SPEED + 2, BOOST_SPEED - 

2) 

240             else: 

241                 motors.set_motor_speed(BOOST_SPEED, BOOST_SPEED) 
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242  

243         # case: Aligned but not at panel → move in carefully 

244         elif (x_error <= X_TOLERANCE and width >= WIDTH_MIN and ir_diff <= 

IR_DIFF_TOL): 

245             print("[STAGE 2] Approaching panel slowly...") 

246             motors.set_motor_speed(APPROACH_SPEED, APPROACH_SPEED) 

247  

248         # Case: Mid-range and off alignment, adjust while approaching 

249         else: 

250             print("[STAGE 3] Mid-range adjustment...") 

251             if x < X_TARGET - X_TOLERANCE: 

252                 motors.set_motor_speed(-int(APPROACH_SPEED * TURN_FORCE), 

APPROACH_SPEED) 

253             elif x > X_TARGET + X_TOLERANCE: 

254                 motors.set_motor_speed(APPROACH_SPEED, -int(APPROACH_SPEED 

* TURN_FORCE)) 

255             elif ir_diff > IR_DIFF_TOL: 

256                 if left_cm > right_cm: 

257                     motors.set_motor_speed(APPROACH_SPEED - 2, 

APPROACH_SPEED + 2) 

258                 else: 

259                     motors.set_motor_speed(APPROACH_SPEED + 2, 

APPROACH_SPEED - 2) 

260             else: 

261                 motors.set_motor_speed(APPROACH_SPEED, APPROACH_SPEED) 

262  

263         time.sleep(0.25) 

264  

 

265 def reverse_and_turn_180(): 

266     print("[AUTO] Reversing before 180 turn...") 

267     motors.set_motor_speed(-30, -30) 

268     time.sleep(1.0) 

269     print("[AUTO] Performing 180 turn...") 

270     motors.set_motor_speed(40, -40) 

271     time.sleep(3.7) 

272     motors.stop_motors() 

273     print("[AUTO] 180 turn complete.") 

274  

275 def transition_to_next_panel(): 

276     print("Step 1: Reverse curve right (left wheel faster)...") 

277     motors.set_motor_speed(-40, -20) 

278     time.sleep(0.8) 

279  

280     print("Step 2: Rotate left to face Panel 2...") 
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281     motors.set_motor_speed(30, -30) 

282     time.sleep(0.6) 

283  

284     motors.stop_motors() 

285     print("Reposition complete. Ready to align with Panel 2.") 

286  

287 def return_home(): 

288     global _e_stop_enabled 

289     log_event("[AUTO] Returning home via Tag 4") 

290     reverse_and_turn_180() 

291  

292     _e_stop_enabled = True 

293     timeout = 20  # seconds without seeing tag triggers failure 

294     last_seen_time = time.time() 

295  

296     print("[AUTO] Seeking Tag 4 for home return...") 

297     while True: 

298         if _e_stop_enabled: 

299             emergency_stop_check() 

300  

301         data = get_tag_data(4) 

302         if data: 

303             last_seen_time = time.time()  # reset timeout 

304             x = data['x'] 

305             width = data['w'] 

306             log_event(f"[AUTO] Tag 4 visible | X={x} W={width}") 

307  

308             if width >= TAG4_STOP_WIDTH: 

309                 motors.stop_motors() 

310                 log_event("[AUTO] Rover successfully returned to home 

position.") 

311                 break 

312  

313             # Steering logic 

314             error = x - CENTER_X 

315             steer = max(-1.0, min(1.0, error / MAX_DEVIATION)) 

316             adjustment = int(steer * MAX_TRACK_SPEED * 0.6) 

317             left_speed = MAX_TRACK_SPEED - adjustment 

318             right_speed = MAX_TRACK_SPEED + adjustment 

319  

320             left_speed = max(-100, min(100, left_speed)) 

321             right_speed = max(-100, min(100, right_speed)) 

322             motors.set_motor_speed(left_speed, right_speed) 

323         else: 

324             motors.stop_motors() 
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325             log_warning("[AUTO] Tag 4 not currently visible") 

326  

327         if time.time() - last_seen_time > timeout: 

328             _e_stop_enabled = False 

329             motors.stop_motors() 

330             fail_and_switch_to_manual("Failed to detect Tag 4 during 

return home") 

331             return 

332  

333         time.sleep(0.1) 

334  

335     _e_stop_enabled = False 

336  

 

337 def run_autonomy(task): 

338     global autonomy_busy, _e_stop_enabled 

339     if autonomy_busy: 

340         log_warning("[AUTO] Already running. Ignoring duplicate task.") 

341         return 

342  

343     autonomy_busy = True 

344     try: 

345         log_event(f"[AUTO] Starting task: {task}") 

346  

347         if task == "panel1": 

348             _e_stop_enabled = True 

349             if not drive_until_tag_detected(1, 2, timeout=20): 

350                 fail_and_switch_to_manual("Lost sight of both Tag 1 and 

Tag 2 during approach") 

351                 return 

352             _e_stop_enabled = False 

353  

354             if not alignment_sequence(2): 

355                 fail_and_switch_to_manual("Alignment with Tag 2 failed") 

356                 return 

357  

358             log_event("Sequence 1 initiated. On standby for 40 seconds.") 

359             trigger_sequence(1) 

360             time.sleep(2) 

361             motors.run_cleaner(100) 

362             time.sleep(43) 

363             motors.stop_cleaner() 

364             time.sleep(4)  

365  

366             log_event("Returning home...") 
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367             return_home() 

368  

369         elif task == "panel2": 

370             _e_stop_enabled = True 

371             if not drive_until_tag_detected(1, 3, timeout=20): 

372                 fail_and_switch_to_manual("Lost sight of both Tag 1 and 

Tag 3 during approach") 

373                 return 

374             _e_stop_enabled = False 

375  

376             if not alignment_sequence(3): 

377                 fail_and_switch_to_manual("Alignment with Tag 3 failed") 

378                 return 

379  

380             log_event("Sequence 1 initiated. On standby for 40 seconds.") 

381             trigger_sequence(1) 

382             time.sleep(2) 

383             motors.run_cleaner(100) 

384             time.sleep(43) 

385             motors.stop_cleaner() 

386             time.sleep(4)  

387             log_event("Returning home...") 

388             return_home() 

389  

390         elif task == "all": 

391             _e_stop_enabled = True 

392             if not drive_until_tag_detected(1, 2, timeout=20): 

393                 fail_and_switch_to_manual("Lost sight of both Tag 1 and 

Tag 2 during approach") 

394                 return 

395             _e_stop_enabled = False 

396  

397             if not alignment_sequence(2): 

398                 fail_and_switch_to_manual("Alignment with Tag 2 failed") 

399                 return 

400  

401             log_event("Sequence 1 initiated. On standby for 40 seconds.") 

402             run_cleaner(50) 

403             trigger_sequence(1) 

404             time.sleep(40) 

405             stop_cleaner() 

406  

407             log_event("Transitioning to Panel 2...") 

408             transition_to_next_panel() 

409  
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410             _e_stop_enabled = True 

411             #try to align with Tag 3 immediately. If not visible, fallback 

to drive_until 

412             if not get_tag_data(3): 

413                 if not drive_until_tag_detected(1, 3, timeout=20): 

414                     fail_and_switch_to_manual("Lost sight of both Tag 1 

and Tag 3 after transition") 

415                     return 

416             _e_stop_enabled = False 

417  

418             if not alignment_sequence(3): 

419                 fail_and_switch_to_manual("Alignment with Tag 3 failed") 

420                 return 

421  

422             log_event("Sequence 1 initiated. On standby for 40 seconds.") 

423             run_cleaner(50) 

424             trigger_sequence(1) 

425             time.sleep(40) 

426             stop_cleaner() 

427  

428             log_event("Returning home...") 

429             return_home() 

430  

431         else: 

432             log_warning(f"[AUTO] Unknown task: {task}") 

433  

434     finally: 

435         autonomy_busy = False 

436         print("[AUTO] Task complete. Autonomy released.") 

437  

 

 

438 #Standalone Testing 

439 if __name__ == "__main__": 

440     print("[TEST] Autonomy Movement Test Mode") 

441     while True: 

442         print("\nSelect a test:") 

443         print("1. Test 180° Turn") 

444         print("2. Test Reverse and Realign (Panel Transition)") 

445         print("3. Exit") 

446         choice = input("Enter choice (1/2/3): ").strip() 

447  

448         if choice == "1": 

449             reverse_and_turn_180() 

450         elif choice == "2": 
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451             transition_to_next_panel() 

452         elif choice == "3": 

453             print("Exiting test mode.") 

454             break 

455         else: 

456             print("Invalid selection.") 

457  
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Appendix H.4 – motors.py 

This file controls all motor functions using the gpiozero library, including drive motors and the 

cleaning mechanism. It provides utility functions to set motor speeds, run the cleaner, stop all 

movement, and interpret high-level drive commands like forward, backward, or turn. 

 

1 from gpiozero import Motor, PWMOutputDevice 

2 from time import sleep 

3  

4 # Pin Config (BCM) 

5 LEFT_IN_A   = 17 

6 LEFT_IN_B   = 27 

7 LEFT_PWM    = 18 

8  

9 RIGHT_IN_A  = 23 

10 RIGHT_IN_B  = 24 

11 RIGHT_PWM   = 19 

12  

13 CLEAN_IN_A  = 5 

14 CLEAN_IN_B  = 6 

15 CLEAN_PWM   = 13 

16  

17 # setup Motors and PWM 

18 left_motor = Motor(forward=LEFT_IN_A, backward=LEFT_IN_B) 

19 right_motor = Motor(forward=RIGHT_IN_A, backward=RIGHT_IN_B) 

20 clean_motor = Motor(forward=CLEAN_IN_A, backward=CLEAN_IN_B) 

21  

22 left_pwm = PWMOutputDevice(LEFT_PWM) 

23 right_pwm = PWMOutputDevice(RIGHT_PWM) 

24 clean_pwm = PWMOutputDevice(CLEAN_PWM) 

25  

26 #Setup Function 

27 def setup(): 

28     stop_motors() 

29     stop_cleaner() 

30     print("[GPIOZERO] Motors initialized.") 

31  

32 # Motor Control 

33 def _set_single_motor(motor, pwm_device, speed, label=""): 

34     speed = max(-100, min(100, speed)) 

35     duty = abs(speed) / 100.0 

36     direction = "Stopped" 

37  

38     if speed > 0: 
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39         motor.forward() 

40         pwm_device.value = duty 

41         direction = "Forward" 

42     elif speed < 0: 

43         motor.backward() 

44         pwm_device.value = duty 

45         direction = "Reverse" 

46     else: 

47         motor.stop() 

48         pwm_device.value = 0.0 

49  

50     if label: 

51         print(f"[MOTOR] {label} => Speed: {abs(speed)}% | Direction: 

{direction}") 

52  

53 def set_motor_speed(left_speed, right_speed): 

54     _set_single_motor(left_motor, left_pwm, left_speed, label="Left 

Motor") 

55     _set_single_motor(right_motor, right_pwm, right_speed, label="Right 

Motor") 

56  

57 def send_drive_command(cmd, speed): 

58     if cmd == "forward": 

59         set_motor_speed(speed, speed) 

60     elif cmd == "backward": 

61         set_motor_speed(-speed, -speed) 

62     elif cmd == "left": 

63         set_motor_speed(-speed, speed) 

64     elif cmd == "right": 

65         set_motor_speed(speed, -speed) 

66     elif cmd == "forward_left": 

67         set_motor_speed(speed // 2, speed) 

68     elif cmd == "forward_right": 

69         set_motor_speed(speed, speed // 2) 

70     elif cmd == "backward_left": 

71         set_motor_speed(-(speed // 2), -speed) 

72     elif cmd == "backward_right": 

73         set_motor_speed(-speed, -(speed // 2)) 

74     elif cmd == "stop": 

75         stop_motors() 

76     else: 

77         print(f"[WARN] Unknown command: {cmd}") 

78  

79 def run_cleaner(speed): 

80     _set_single_motor(clean_motor, clean_pwm, speed, label="Cleaner") 
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81  

82 def stop_motors(): 

83     left_motor.stop() 

84     right_motor.stop() 

85     left_pwm.value = 0.0 

86     right_pwm.value = 0.0 

87  

88 def stop_cleaner(): 

89     clean_motor.stop() 

90     clean_pwm.value = 0.0 

91  

92 def cleanup(): 

93     stop_motors() 

94     stop_cleaner() 

95     print("[GPIOZERO] Cleanup complete.") 

96  

97 #Test Block 

98 if __name__ == "__main__": 

99     stop_motors() 

100  
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Appendix H.5 – sharp_sensors.py 

1 import board 

2 import busio 

3 import adafruit_ads1x15.ads1115 as ADS 

4 from adafruit_ads1x15.analog_in import AnalogIn 

5 from collections import deque 

6 import time 

7 from logger import * 

8 import motors 

9 import signal 

10 import sys 

11  

12 # I2C setup 

13 i2c = busio.I2C(board.SCL, board.SDA) 

14 ads = ADS.ADS1115(i2c) 

15 ads.gain = 1  # Set gain for 3.3V max input 

16  

17 # Channel setup 

18 left_sensor = AnalogIn(ads, ADS.P0)   # A0 

19 right_sensor = AnalogIn(ads, ADS.P1)  # A1 

20  

21 # Smoothing buffers 

22 left_buffer = deque(maxlen=10) 

23 right_buffer = deque(maxlen=10) 

24  

25 #Exponential Moving Average 

26 left_ema = None  

27 right_ema = None 

28 alpha = 0.2 

29  

30 _last_triggered = 0 

31 _obstacle_start_time = None 

32  

33 def voltage_to_distance(voltage): 

34     if voltage <= 0.1: 

35         return float('inf')  #Out of range 

36     return round(27.86 / (voltage - 0.1), 2) 

37  

38 def update_buffers(): 

39     global left_ema, right_ema 

40     left_voltage = left_sensor.voltage 

41     right_voltage = right_sensor.voltage 

42  

43     left_dist = voltage_to_distance(left_voltage) 
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44     right_dist = voltage_to_distance(right_voltage) 

45  

46     left_buffer.append(left_dist) 

47     right_buffer.append(right_dist) 

48  

49     left_ema = left_dist if left_ema is None else alpha * left_dist + (1 - 

alpha) * left_ema 

50     right_ema = right_dist if right_ema is None else alpha * right_dist + 

(1 - alpha) * right_ema 

51  

52 def get_smoothed_distances(): 

53     update_buffers() 

54     return round(left_ema, 2), round(right_ema, 2)  

55  

56 def is_obstacle_detected(threshold_cm=40.0): 

57     left_dist, right_dist = get_smoothed_distances() 

58     return left_dist < threshold_cm or right_dist < threshold_cm 

59  

60 def emergency_stop_check(threshold_cm=40.0, cooldown=7): 

61     global _last_triggered, _obstacle_start_time 

62   

63     now = time.time() 

64     if now - _last_triggered < cooldown: 

65         return 

66  

67     if is_obstacle_detected(threshold_cm): 

68         print("Obstacle detected! Pausing movement...") 

69         log_warning("Obstacle detected! Pausing movement...") 

70         motors.stop_motors() 

71  

72         if _obstacle_start_time is None: 

73             _obstacle_start_time = now 

74         elif now - _obstacle_start_time > 20: 

75             print("Obstacle still present after 1 minute! Logging 

alert...") 

76             log_alert("Obstacle still present after 1 minute! Logging 

alert...") 

77  

78         time.sleep(5) 

79         _last_triggered = time.time() 

80     else: 

81         _obstacle_start_time = None  # Reset timer if path is clear 

82  

83 # Graceful shutdown 

84 def shutdown_handler(sig, frame): 
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85     print("\nExiting. Cleaning up GPIO...") 

86     motors.cleanup() 

87     sys.exit(0) 

88  

89 signal.signal(signal.SIGINT, shutdown_handler) 

90  

91 # Test block 

92 if __name__ == "__main__": 

93     motors.setup() 

94     print("Running Sharp Sensor Test...") 

95     while True: 

96         left, right = get_smoothed_distances() 

97         print(f"Left: {left:.2f} cm | Right: {right:.2f} cm") 

98  

99         #log_event(f"Left: {left:.2f} cm | Right: {right:.2f} cm") 

100  

101         #emergency_stop_check() 

102  

103         time.sleep(0.2) 

104  
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Appendix H.6 – visual_module.py 

This module interfaces with the HuskyLens AI vision sensor over I2C to detect and track 

AprilTags. It provides smoothed position and size data for specified tag IDs using a rolling 

buffer, improving stability in visual alignment tasks. 

 

1 import sys 

2 import os 

3 import time 

4 from collections import deque 

5 from huskylib import HuskyLensLibrary 

6 from logger import log_event 

7  

8 # Init HuskyLens in I2C mode 

9 huskylens = HuskyLensLibrary("I2C", address=0x32) 

10  

11 #smoothing buffers for each tag ID 

12 _buffers = { 

13     1: deque(maxlen=5), 

14     2: deque(maxlen=5), 

15     3: deque(maxlen=5), 

16     4: deque(maxlen=5) 

17 } 

18  

19 def get_tag_data(tag_id): 

20     """ 

21     Returns smoothed data for a given tag_id. 

22     Output: dict with x, y, width, height or None if tag not found. 

23     """ 

24     try: 

25         huskylens.requestAll() 

26         blocks = huskylens.blocks() 

27         if not isinstance(blocks, list): 

28             blocks = [blocks] 

29  

30         for block in blocks: 

31             if hasattr(block, 'ID') and block.ID == tag_id: 

32                 data = {'x': block.x, 'y': block.y, 'w': block.width, 'h': 

block.height} 

33                 _buffers[tag_id].append(data) 

34                 return _get_smoothed(tag_id) 

35     except Exception as e: 

36         print(f"[visual_module] Error: {e}") 

37     return None 
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38  

39 def _get_smoothed(tag_id): 

40     """ 

41     Returns the average of x, y, w, h from the buffer for the given tag. 

42     """ 

43     buf = _buffers[tag_id] 

44     if not buf: 

45         return None 

46     avg = { 

47         'x': round(sum(d['x'] for d in buf) / len(buf), 2), 

48         'y': round(sum(d['y'] for d in buf) / len(buf), 2), 

49         'w': round(sum(d['w'] for d in buf) / len(buf), 2), 

50         'h': round(sum(d['h'] for d in buf) / len(buf), 2) 

51     } 

52     return avg 

53  

54 # test 

55 if __name__ == "__main__": 

56     while True: 

57         for tag_id in [1, 2, 3, 4]: 

58             data = get_tag_data(tag_id) 

59             if data: 

60                 print(f"Tag {tag_id}: X={data['x']} Y={data['y']} 

W={data['w']} H={data['h']}") 

61                 log_event(f"Tag {tag_id}: X={data['x']} Y={data['y']} 

W={data['w']} H={data['h']}") 

62         time.sleep(0.5) 

63  
64  

  



 179  
 

Appendix H.7 – maestro_module.py 

This module provides a lightweight interface for triggering subroutines on the Pololu Maestro 

controller using serial communication. It abstracts the low-level protocol into a simple 

trigger_sequence() function, allowing the system to initiate scripted hardware actions like servo 

movements. 

 

1 """ 

2 maestro_module.py 

3  

4 Custom Python interface for triggering Pololu Maestro script subroutines 

via serial commands. 

5  

6 DISCLAIMER: 

7 The hexadecimal command values used in this module are based on the 

official Pololu Maestro 

8 Serial Script Command Protocol as documented in the Pololu Maestro User's 

Guide: 

9  

10 https://www.pololu.com/docs/pdf/0j40/maestro.pdf 

11  

12 All protocol definitions, device numbers, and command structures follow 

the specifications 

13 outlined by Pololu. This module simply provides a lightweight and project-

specific interface 

14 to those commands and does not represent original protocol design. 

15  

16 Author: Pedro Cabrera 

17 Date: 2025-07-11 

18 """ 

19  

20 import serial 

21 import time 

22  

23 #CONFIGURATION 

24 DEVICE_NUMBER = 0x0C # Default Maestro device number (0x0C = 12) 

25 PORT = "/dev/ttyACM0" # Serial port where Maestro is connected 

26 BAUDRATE = 9600 # Default USB baudrate for Maestro communication 

27  

28 def trigger_sequence(subroutine: int): 

29     """ 

30     Triggers a script subroutine on the Maestro controller. 

31      
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32     Args: 

33         subroutine (int): The subroutine number to run (0 = first defined 

in Maestro script) 

34     """ 

35     command = [0xAA, DEVICE_NUMBER, 0x27, subroutine] 

36     try: 

37         with serial.Serial(PORT, BAUDRATE, timeout=1) as maestro: 

38             maestro.write(bytearray(command)) 

39         print(f"[Maestro] Triggered subroutine {subroutine}") 

40     except Exception as e: 

41         print(f"[Maestro] Error triggering subroutine {subroutine}: {e}") 

42  

43 #TEST BLOCK 

44 if __name__ == "__main__": 

45     print("Testing Maestro subroutine trigger...") 

46     trigger_sequence(1) 

47     print("40 sec delay initiated") 

48     time.sleep(40) 

49     print("sequence complete") 

50  
 

 

  



 181  
 

Appendix H.8 – logger.py 

This module handles system logging by writing timestamped messages to an SQLite database. It 

supports three log levels, INFO, WARNING, and ALERT, and provides utility functions for 

structured logging throughout the application. 

1 import sqlite3 

2 import datetime 

3 import os 

4  

5 DB_FILE = os.path.join(os.path.dirname(__file__), 'event_log.db') 

6  

7 def log_event(message, level='INFO'): 

8     timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") 

9     conn = sqlite3.connect(DB_FILE) 

10     c = conn.cursor() 

11     c.execute("INSERT INTO logs (timestamp, level, message) VALUES (?, ?, 

?)", 

12               (timestamp, level, message)) 

13     conn.commit() 

14     conn.close() 

15     print(f"[{timestamp}] ({level}) {message}") 

16  

17 def log_warning(message): 

18     log_event(message, level='WARNING') 

19  

20 def log_alert(message): 

21     log_event(message, level='ALERT') 

 
  



 182  
 

Appendix H.9 – shared_state.py 

This file provides a simple interface for setting and retrieving a global shared state dictionary 

across multiple processes. It allows safe, centralized management of shared variables such as the 

current operating mode. 

 

1 shared = None 

2  

3 def set_shared(s): 

4     global shared 

5     shared = s 

6  

7 def get_shared(): 

8     return shared 

9  

10 def set_mode(new_mode): 

11     if shared is not None: 

12         shared["mode"] = new_mode 

13  
14  
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Appendix H.10 – command_center.py  

This module provides helper functions to manage shared commands, speed, mode, and tasks 

through the shared memory dictionary. It serves as the central hub for setting and retrieving 

control parameters used by different system components. 

 

1 from shared_state import get_shared 

2  

3 def set_command(cmd): 

4     get_shared()["command"] = cmd 

5  

6 def get_command(): 

7     return get_shared().get("command", None) 

8  

9 def clear_command(): 

10     get_shared()["command"] = None 

11  

12 def set_speed(speed): 

13     get_shared()["speed"] = speed 

14  

15 def get_speed(): 

16     return get_shared().get("speed", 40) 

17  

18 def set_mode(mode): 

19     get_shared()["mode"] = mode 

20  

21 def get_mode(): 

22     return get_shared().get("mode", "idle") 

23  

24 def set_task(task): 

25     get_shared()["task"] = task 

26  

27 def get_task(): 

28     return get_shared().get("task", None) 

29  

30 def clear_task(): 

31     get_shared()["task"] = None 

32  
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Appendix H.11 – failsafe_manual.py 

This script provides a keyboard-controlled fallback interface for manual operation using the 

curses library. It allows real-time movement via WASD-style input and includes hotkeys to 

trigger cleaning sequences and alignment routines, ensuring basic functionality even if the web 

dashboard becomes unavailable. 

 

1 import curses 

2 import time 

3 import motors 

4 from maestro_module import trigger_sequence 

5 from autonomy import alignment_sequence 

6  

7 #constants 

8 SPEED = 40 

9 ALIGN_TAG_1 = 2 

10 ALIGN_TAG_2 = 3 

11  

12 # movement Commands Map 

13 key_to_command = { 

14     'w': 'forward', 

15     'a': 'left', 

16     's': 'backward', 

17     'd': 'right', 

18     'q': 'forward_left', 

19     'e': 'forward_right', 

20     'z': 'backward_left', 

21     'x': 'backward_right' 

22 } 

23  

24 def main(screen): 

25     curses.cbreak() 

26     screen.nodelay(True) 

27     screen.keypad(True) 

28  

29     print(" Failsafe Manual Mode Active (Ctrl+C to exit)\n") 

30     print(" Hold movement keys (WASDQEZX) to drive") 

31     print(" Press 1 = Sequence 1 | 2 = Sequence 2") 

32     print(" Press 3 = Align Panel 1 | 4 = Align Panel 2\n") 

33  

34     last_key = None 

35     motors.setup() 

36  
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37     try: 

38         while True: 

39             key = screen.getch() 

40             if key == -1: 

41                 if last_key: 

42                     motors.stop_motors() 

43                     print(f"[STOP] Released {last_key.upper()}") 

44                     last_key = None 

45                 time.sleep(0.01) 

46                 continue 

47  

48             try: 

49                 char = chr(key).lower() 

50             except ValueError: 

51                 continue  # ignore unprintable chars 

52  

53             # handle one-time actions 

54             if char == '1': 

55                 print("[SEQ] Triggering Sequence 1") 

56                 motors.run_cleaner(60)   

57                 trigger_sequence(1) 

58                 print("[CLEANER] Running for 40 seconds...") 

59                 time.sleep(40) 

60                 motors.stop_cleaner() 

61                 print("[CLEANER] Stopped after sequence 1") 

62  

63             elif char == '2': 

64                 print("[SEQ] Triggering Sequence 2") 

65                 motors.run_cleaner(60) 

66                 trigger_sequence(2) 

67                 print("[CLEANER] Running for 60 seconds...") 

68                 time.sleep(60) 

69                 motors.stop_cleaner() 

70                 print("[CLEANER] Stopped after sequence 2") 

71                  

72             elif char == '3': 

73                 print("[ALIGN] Aligning to Panel 1 (Tag 2)") 

74                 alignment_sequence(ALIGN_TAG_1) 

75             elif char == '4': 

76                 print("[ALIGN] Aligning to Panel 2 (Tag 3)") 

77                 alignment_sequence(ALIGN_TAG_2) 

78             elif char in key_to_command: 

79                 if char != last_key: 

80                     cmd = key_to_command[char] 

81                     motors.send_drive_command(cmd, SPEED) 
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82                     print(f"[MOVE] {char.upper()} → {cmd} at {SPEED}%") 

83                     last_key = char 

84             else: 

85                 if last_key: 

86                     motors.stop_motors() 

87                     print(f"[STOP] Released {last_key.upper()}") 

88                     last_key = None 

89  

90             time.sleep(0.01) 

91  

92     except KeyboardInterrupt: 

93         print("\n Exiting manual mode...") 

94         motors.cleanup() 

95         time.sleep(0.5) 

96  

97 if __name__ == "__main__": 

98     curses.wrapper(main) 
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Appendix H.12 – init_db.py 

This script initializes the SQLite database used for logging system events. It creates a logs table 

with fields for ID, timestamp, severity level, and message. This setup is required before any 

logging can occur. 

 

1 import sqlite3 

2  

3 def initialize_db(): 

4     conn = sqlite3.connect('event_log.db') 

5     c = conn.cursor() 

6     c.execute(""" 

7               CREATE TABLE IF NOT EXISTS logs ( 

8                   id INTEGER PRIMARY KEY AUTOINCREMENT, 

9                   timestamp TEXT NOT NULL, 

10                   level TEXT NOT NULL, 

11                   message TEXT NOT NULL 

12               ) 

13               """) 

14     conn.commit() 

15     conn.close() 

16  

17 if __name__ == "__main__": 

18     initialize_db() 

19     print("Database initialized.") 
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Appendix H.13 – app.py 

This Flask application powers the web-based control dashboard. It provides routes for selecting 

modes, sending commands, adjusting speed, viewing logs, and assigning tasks. It also interfaces 

with shared memory to synchronize actions between the UI and the rover's core logic. 

 

1 import os 

2 import sys 

3 sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 

'..'))) 

4 from command_center import set_command, set_speed, set_task, set_mode 

5 from flask import Flask, render_template, request, redirect, url_for, 

jsonify 

6 import sqlite3 

7  

8 current_speed = 40 

9 current_mode = "idle"  # Options: "idle", "manual", "autonomous" 

10  

11 app = Flask(__name__) 

12  

13 BASE_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) 

14 DB_PATH = os.path.join(BASE_DIR, 'event_log.db') 

15  

16 selected_task = None  # Stores current panel selection 

17  

18 #Database Helper 

19 def fetch_logs(level_filter=None, limit=50, offset=0): 

20     conn = sqlite3.connect(DB_PATH) 

21     c = conn.cursor() 

22     if level_filter and level_filter != "ALL": 

23         c.execute("SELECT * FROM logs WHERE level=? ORDER BY id DESC LIMIT 

? OFFSET ?", (level_filter, limit, offset)) 

24     else: 

25         c.execute("SELECT * FROM logs ORDER BY id DESC LIMIT ? OFFSET ?", 

(limit, offset)) 

26     logs = c.fetchall() 

27     conn.close() 

28     return logs 

29  

30 #Routes 

31  

32 @app.route("/") 

33 def home(): 

34     return render_template("home.html") 
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35  

36 @app.route("/mode") 

37 def mode_selection(): 

38     return render_template("mode.html") 

39  

40 @app.route("/autonomous", methods=["GET", "POST"]) 

41 def autonomous(): 

42     global selected_task 

43     if request.method == "POST": 

44         selected_task = request.form["task"] 

45         set_task(selected_task) 

46         return redirect(url_for("autonomous")) 

47     return render_template("autonomous.html", selected_task=selected_task) 

48  

49 @app.route("/manual") 

50 def manual_control(): 

51     return render_template("manual.html") 

52  

53 @app.route("/logs") 

54 def show_logs(): 

55     level = request.args.get("level", "ALL") 

56     logs = fetch_logs(level) 

57     return render_template("index.html", logs=logs, level=level) 

58  

59 @app.route("/logs/more") 

60 def load_more_logs(): 

61     level = request.args.get("level", "ALL") 

62     offset = int(request.args.get("offset", 50)) 

63     logs = fetch_logs(level, offset=50, limit=50) 

64     return render_template("log_table.html", logs=logs) 

65  

66 @app.route("/manual/command", methods=["POST"]) 

67 def manual_command(): 

68     data = request.get_json() 

69     cmd = data.get("command") 

70     set_command(cmd) 

71     print(f"[Manual CMD] Sent to buffer: {cmd}") 

72     return jsonify({"status": "ok"}), 200 

73  

74 @app.route("/manual/speed", methods=["POST"]) 

75 def set_speed_handler(): 

76     data = request.get_json() 

77     speed = int(data.get("speed", 40)) 

78     set_speed(speed) 

79     print(f"[Speed] Updated in buffer: {speed}%") 
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80     return jsonify({"status": "updated", "speed": speed}), 200 

81  

82 @app.route("/set_mode", methods=["POST"]) 

83 def set_mode_route(): 

84     data = request.get_json() 

85     mode = data.get("mode") 

86     if mode in ["manual", "autonomous"]: 

87         set_mode(mode) 

88         print(f"[Mode] Updated to {mode}") 

89         return jsonify({"status": "ok", "mode": mode}), 200 

90     return jsonify({"status": "error", "message": "Invalid mode"}), 400 

91  

92 @app.route("/get_mode", methods=["GET"]) 

93 def get_mode(): 

94     return jsonify({"mode": current_mode}), 200 

95  

96 #Flask run 

97 if __name__ == "__main__": 

98     app.run(host='0.0.0.0', port=5000, debug=False) 

99  
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Appendix H.14 – joystick.js 

This JavaScript file enables joystick-based manual control on the web dashboard using the 

NippleJS library. It translates joystick movements into directional commands and sends them to 

the backend via POST requests for real-time rover control. 

 

1 const joystickZone = document.getElementById('joystick'); 

2 const joystick = nipplejs.create({ 

3     zone: joystickZone, 

4     mode: 'static', 

5     position: { left: '50%', top: '50%' }, 

6     color: 'blue', 

7     size: 150 

8 }); 

9  

10 let lastSent = 0; 

11 const SEND_INTERVAL = 300; 

12  

13 joystick.on('move', (evt, data) => { 

14     if (!data || !data.angle) return; 

15  

16     const now = Date.now(); 

17     if (now - lastSent < SEND_INTERVAL) return; 

18     lastSent = now; 

19  

20     // Flip horizontally + rotate -90° 

21     let angle = 450 - data.angle.degree; 

22     if (angle >= 360) angle -= 360; 

23  

24     let command = 'stop'; 

25  

26     if (angle >= 337.5 || angle < 22.5) { 

27         command = 'forward'; 

28     } else if (angle >= 22.5 && angle < 67.5) { 

29         command = 'forward_right'; 

30     } else if (angle >= 67.5 && angle < 112.5) { 

31         command = 'right'; 

32     } else if (angle >= 112.5 && angle < 157.5) { 

33         command = 'backward_right'; 

34     } else if (angle >= 157.5 && angle < 202.5) { 

35         command = 'backward'; 

36     } else if (angle >= 202.5 && angle < 247.5) { 

37         command = 'backward_left'; 

38     } else if (angle >= 247.5 && angle < 292.5) { 
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39         command = 'left'; 

40     } else if (angle >= 292.5 && angle < 337.5) { 

41         command = 'forward_left'; 

42     } 

43  

44     sendJoystickCommand(command); 

45 }); 

46  

 

47 joystick.on('end', () => { 

48     sendJoystickCommand('stop'); 

49 }); 

50  

51 function sendJoystickCommand(cmd) { 

52     fetch('/manual/command', { 

53         method: 'POST', 

54         headers: { 'Content-Type': 'application/json' }, 

55         body: JSON.stringify({ command: cmd }) 

56     }); 

57 } 

58  
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Appendix H.15 – home.html 

This is the landing page for the Astraeus web interface. It provides users with navigation options 

to select between autonomous or manual operation modes and to view system logs. The design is 

clean and responsive for ease of use on desktop or mobile devices. 

 

1 <!DOCTYPE html> 

2 <html lang="en"> 

3 <head> 

4     <meta charset="UTF-8"> 

5     <title>Astraeus Home</title> 

6     <style> 

7         body { 

8             margin: 0; 

9             font-family: 'Segoe UI', sans-serif; 

10             background-color: #f4f4f4; 

11         } 

12  

13         header { 

14             background-color: black; 

15             text-align: center; 

16             padding: 1rem; 

17         } 

18  

19         header img { 

20             max-width: 100%; 

21             height: auto; 

22         } 

23  

24         .container { 

25             text-align: center; 

26             padding: 2rem; 

27         } 

28  

29         h1 { 

30             font-size: 2.5rem; 

31             color: #333; 

32         } 

33  

34         .button-container { 

35             margin-top: 2rem; 

36         } 

37  

38         .main-btn { 
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39             padding: 1rem 2rem; 

40             margin: 1rem; 

41             text-decoration: none; 

42             color: white; 

43             font-size: 1.2rem; 

44             font-weight: bold; 

45             border-radius: 8px; 

46             display: inline-block; 

47             transition: background-color 0.2s ease; 

48         } 

49  

50         .main-btn:hover { 

51             opacity: 0.9; 

52         } 

53  

54         .mode-btn { 

55             background-color: #007bff; 

56         } 

57  

58         .logs-btn { 

59             background-color: #28a745; 

60         } 

61     </style> 

62 </head> 

63 <body> 

64  

65 <header> 

66     <img src="{{ url_for('static', filename='astraeus_logo.png') }}" 

alt="ASTRAEUS"> 

67 </header> 

68  

69 <div class="container"> 

70     <h1>Welcome to Astraeus</h1> 

71     <p>Select a mode or view logs from the rover system.</p> 

72  

73     <div class="button-container"> 

74         <a href="{{ url_for('mode_selection') }}" class="main-btn mode-

btn">🧭 Mode Selection</a> 

75         <a href="{{ url_for('show_logs') }}" class="main-btn logs-btn">📜 

View Logs</a> 

76     </div> 

77 </div> 

78 </body> 

79 </html>  
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Appendix H.16 – index.html 

This page displays system logs from the rover in a filterable and scrollable format. Users can 

view logs by severity (ALL, WARNING, ALERT), load older entries, and see real-time updates 

with visual indicators when new messages arrive. The interface is styled for clarity and ease of 

use. 

1 <!DOCTYPE html> 

2 <html lang="en"> 

3 <head> 

4     <meta charset="UTF-8"> 

5     <title>Logger</title> 

6     <style> 

7         .log-btn { 

8             display: inline-block; 

9             margin: 0 10px; 

10             padding: 0.5em 1.2em; 

11             border-radius: 8px; 

12             text-decoration: none; 

13             font-weight: bold; 

14             font-family: 'Segoe UI', sans-serif; 

15             font-size: 14px; 

16             transition: all 0.2s ease; 

17             background-color: #e0e0e0; 

18             color: #000; 

19             box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1); 

20         } 

21  

22         .log-btn:hover { 

23             background-color: #ccc; 

24         } 

25  

26         .log-btn.active { 

27             border: 2px solid #007bff; 

28             background-color: #d9edff; 

29             color: #007bff; 

30         } 

31  

32         .log-btn.warning { 

33             background-color: #fff2c2; 

34             color: #b8860b; 

35         } 

36  

37         .log-btn.warning.active { 

38             background-color: #ffeb99; 
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39             border-color: #b8860b; 

40         } 

41  

42         .log-btn.alert { 

43             background-color: #ffcccc; 

44             color: #b22222; 

45         } 

46  

47         .log-btn.alert.active { 

48             background-color: #ff9999; 

49             border-color: #b22222; 

50         } 

51  

52         .log-btn.neutral { 

53             background-color: #eee; 

54             color: #333; 

55         } 

56  

57         .log-btn.neutral:hover { 

58             background-color: #ddd; 

59         } 

60     </style> 

61 </head> 

62 <body> 

63     <header style="background-color:black; text-align:center; 

padding:1rem;"> 

64         <img src="{{ url_for('static', filename='astraeus_logo.png') }}" 

alt="ASTRAEUS" style="max-width:100%; height:auto;"> 

65     </header> 

66  

67     <div class="container"> 

68         <div class="filter-tabs" style="text-align:center; margin: 1.5rem 

0;"> 

69             <a href="{{ url_for('home') }}" class="log-btn neutral"> 

Home</a> 

70             <a href="{{ url_for('show_logs', level='ALL') }}" class="log-

btn {{ 'active' if level == 'ALL' else '' }}">ALL</a> 

71             <a href="{{ url_for('show_logs', level='WARNING') }}" 

class="log-btn warning {{ 'active' if level == 'WARNING' else '' 

}}">WARNING</a> 

72             <a href="{{ url_for('show_logs', level='ALERT') }}" 

class="log-btn alert {{ 'active' if level == 'ALERT' else '' }}">ALERT</a> 

73         </div> 

74  

75         <div id="logTable"> 
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76             {% include 'log_table.html' %} 

77         </div> 

78  

79         <button id="loadMoreBtn" style=" 

80             display: block; 

81             margin: 2rem auto; 

82             padding: 0.75rem 1.5rem; 

83             background: #333; 

84             color: white; 

85             border: none; 

86             border-radius: 5px; 

87             font-weight: bold; 

88             cursor: pointer; 

89         "> 

90             Load Older Logs 

91         </button> 

92  

93         <div id="newMessages" onclick="scrollToTop()" style=" 

94             position: fixed; 

95             bottom: 0; 

96             left: 50%; 

97             transform: translateX(-50%); 

98             background: #007bff; 

99             color: white; 

100             padding: 0.75em 1.5em; 

101             border-radius: 1rem 1rem 0 0; 

102             display: none; 

103             z-index: 999; 

104             cursor: pointer; 

105             font-weight: bold; 

106         "> 

107             New logs available — click to return 

108         </div> 

109     </div> 

110  

111     <script> 

112         const logTable = document.getElementById('logTable'); 

113         const newMessages = document.getElementById('newMessages'); 

114         const level = "{{ level }}"; 

115         let autoScroll = true; 

116         let offset = 50; 

117  

118         function scrollToTop() { 

119             window.scrollTo({ top: 0, behavior: 'smooth' }); 

120             autoScroll = true; 
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121             newMessages.style.display = 'none'; 

122         } 

123  

124         window.addEventListener('scroll', () => { 

125             autoScroll = window.scrollY < 100; 

126         }); 

127  

128         function updateLogs() { 

129             if (!autoScroll) return; 

130  

131             fetch("/logs" + (level !== 'ALL' ? `?level=${level}` : '')) 

132                 .then(res => res.text()) 

133                 .then(html => { 

134                     const newTable = document.createElement('div'); 

135                     newTable.innerHTML = html; 

136                     const newContent = newTable.querySelector('table 

tbody').innerHTML; 

137  

138                     const currentContent = logTable.querySelector('table 

tbody').innerHTML; 

139                     if (newContent !== currentContent) { 

140                         logTable.querySelector('table tbody').innerHTML = 

newContent; 

141  

142                         if (autoScroll) { 

143                             window.scrollTo({ top: 0, behavior: 'smooth' 

}); 

144                             newMessages.style.display = 'none'; 

145                         } else { 

146                             newMessages.style.display = 'block'; 

147                         } 

148                     } 

149                 }) 

150                 .catch(err => { 

151                     console.error("Error loading logs:", err); 

152                 }); 

153         } 

154  

155         document.getElementById("loadMoreBtn").addEventListener("click", 

() => { 

156             autoScroll = false; 

157  

158             fetch(`/logs/more?level=${level}&offset=${offset}`) 

159                 .then(res => res.text()) 

160                 .then(html => { 
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161                     const newTable = document.createElement('div'); 

162                     newTable.innerHTML = html; 

163                     const newRows = 

newTable.querySelector('tbody').innerHTML; 

164                     logTable.querySelector('tbody').innerHTML += newRows; 

165                     offset += 50; 

166                 }); 

167         }); 

168  

169         setInterval(updateLogs, 5000); 

170     </script> 

171 </body> 

172 </html> 
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Appendix H.17 – autonomous.html 

This page allows users to initiate autonomous cleaning tasks by selecting Panel 1, Panel 2, or 

both. It displays the current selection and posts the task back to the server. The interface is styled 

for clarity and user accessibility on various devices. 

 

1 <!DOCTYPE html> 

2 <html lang="en"> 

3 <head> 

4     <meta charset="UTF-8"> 

5     <title>Select Panel</title> 

6     <style> 

7         body { 

8             margin: 0; 

9             font-family: 'Segoe UI', sans-serif; 

10             background-color: #f4f4f4; 

11         } 

12  

13         header { 

14             background-color: black; 

15             text-align: center; 

16             padding: 1rem; 

17         } 

18  

19         header img { 

20             max-width: 100%; 

21             height: auto; 

22         } 

23  

24         .content { 

25             max-width: 500px; 

26             margin: 3rem auto; 

27             background: white; 

28             border-radius: 12px; 

29             padding: 2rem; 

30             box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1); 

31             text-align: center; 

32         } 

33  

34         h2 { 

35             margin-bottom: 1rem; 

36             font-size: 1.8rem; 

37         } 

38  



 201  
 

39         form button { 

40             display: block; 

41             width: 100%; 

42             padding: 1rem; 

43             margin: 0.5rem 0; 

44             font-size: 1rem; 

45             font-weight: bold; 

46             border: none; 

47             border-radius: 8px; 

48             cursor: pointer; 

49             transition: all 0.2s ease; 

50         } 

51  

52         .panel1 { 

53             background-color: #007bff; 

54             color: white; 

55         } 

56  

57         .panel1:hover { 

58             background-color: #0056b3; 

59         } 

60  

61         .panel2 { 

62             background-color: #28a745; 

63             color: white; 

64         } 

65  

66         .panel2:hover { 

67             background-color: #1e7e34; 

68         } 

69  

70         .all { 

71             background-color: #ff9900; 

72             color: white; 

73         } 

74  

75         .all:hover { 

76             background-color: #cc7a00; 

77         } 

78  

79         .current-task { 

80             margin-top: 1rem; 

81             color: #555; 

82             font-style: italic; 

83         } 
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84  

85         .home-link { 

86             margin-top: 2rem; 

87             display: inline-block; 

88             color: #333; 

89             text-decoration: none; 

90             font-weight: bold; 

91         } 

92  

93         .home-link:hover { 

94             text-decoration: underline; 

95         } 

96     </style> 

97 </head> 

98 <body> 

99  

100 <header> 

101     <img src="{{ url_for('static', filename='astraeus_logo.png') }}" 

alt="ASTRAEUS"> 

102 </header> 

103  

104 <div class="content"> 

105     <h2>Select Cleaning Mode</h2> 

106     <form method="POST"> 

107         <button class="panel1" name="task" value="panel1">🧽 Clean Panel 

1</button> 

108         <button class="panel2" name="task" value="panel2">🧼 Clean Panel 

2</button> 

109         <button class="all" name="task" value="all">🧹 Clean Both 

Panels</button> 

110     </form> 

111  

112     {% if selected_task %} 

113         <div class="current-task"> 

114             Selected Task: <strong>{{ selected_task|capitalize }}</strong> 

115         </div> 

116     {% endif %} 

117  

118     <a class="home-link" href="{{ url_for('home') }}">← Back to Home</a> 

119 </div> 

120  

121 </body> 

122 </html> 
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Appendix H.18 – log_table.html 

This HTML partial renders a styled table for displaying log entries, including ID, timestamp, 

severity level, and message content. It uses conditional formatting to highlight WARNING and 

ALERT levels, and is dynamically loaded into the logs dashboard. 

 

1 <div style="display: flex; justify-content: center;"> 

2 <table style=" 

3     width: 90%; 

4     max-width: 1000px; 

5     border-collapse: collapse; 

6     margin: 1rem auto; 

7     font-family: 'Segoe UI', sans-serif; 

8     font-size: 14px; 

9     background: white; 

10     border-radius: 8px; 

11     overflow: hidden; 

12     box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1); 

13     text-align: center; 

14 "> 

15     <thead style="background-color: #f9f9f9;"> 

16         <tr> 

17             <th style="padding: 12px; border-bottom: 1px solid #ccc; 

width: 5%;">#</th> 

18             <th style="padding: 12px; border-bottom: 1px solid #ccc; 

width: 20%;">Timestamp</th> 

19             <th style="padding: 12px; border-bottom: 1px solid #ccc; 

width: 15%;">Level</th> 

20             <th style="padding: 12px; border-bottom: 1px solid #ccc; text-

align: left;">Message</th> 

21         </tr> 

22     </thead> 

23     <tbody> 

24         {% for entry in logs %} 

25         <tr style="background-color: 

26             {% if entry[2] == 'WARNING' %}#fff8dc 

27             {% elif entry[2] == 'ALERT' %}#ffe6e6 

28             {% else %}#ffffff{% endif %}; 

29             border-bottom: 1px solid #eee;"> 

30             <td style="padding: 10px;">{{ entry[0] }}</td> 

31             <td style="padding: 10px;">{{ entry[1] }}</td> 

32             <td style="padding: 10px; font-weight: bold;">{{ entry[2] 

}}</td> 
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33             <td style="padding: 10px; text-align: left;">{{ entry[3] 

}}</td> 

34         </tr> 

35         {% endfor %} 

36     </tbody> 

37 </table> 

38 </div> 
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Appendix H.19 – manual.html 

This page provides an interface for manual rover control via a virtual joystick and control 

buttons. Users can initiate movement, trigger cleaning sequences, align with panels, and adjust 

speed using a slider. It communicates with the backend through AJAX to update rover 

commands in real time. 

 

1 <!DOCTYPE html> 

2 <html lang="en"> 

3 <head> 

4     <meta charset="UTF-8"> 

5     <title>Manual Control</title> 

6     <link rel="stylesheet" href="{{ url_for('static', 

filename='style.css') }}"> 

7     <script src="{{ url_for('static', filename='js/nipplejs.min.js') 

}}"></script> <!-- Local nipplejs --> 

8     <script defer src="{{ url_for('static', filename='js/joystick.js') 

}}"></script> <!-- Custom joystick logic --> 

9     <style> 

10         body { 

11             margin: 0; 

12             font-family: 'Segoe UI', sans-serif; 

13             background-color: #f4f4f4; 

14         } 

15  

16         header { 

17             background-color: black; 

18             text-align: center; 

19             padding: 1rem; 

20         } 

21  

22         header img { 

23             max-width: 100%; 

24             height: auto; 

25         } 

26  

27         .container { 

28             max-width: 600px; 

29             margin: 2rem auto; 

30             text-align: center; 

31             background: white; 

32             padding: 2rem; 

33             border-radius: 12px; 
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34             box-shadow: 0 4px 15px rgba(0,0,0,0.1); 

35         } 

36  

37         h2 { 

38             margin-bottom: 1rem; 

39         } 

40  

41         .control-btn { 

42             margin: 0.5rem; 

43             padding: 0.75rem 1.5rem; 

44             font-size: 1rem; 

45             font-weight: bold; 

46             border: none; 

47             border-radius: 8px; 

48             cursor: pointer; 

49             color: white; 

50             background: #007bff; 

51         } 

52  

53         .control-btn:hover { 

54             background: #0056b3; 

55         } 

56  

57         .slider { 

58             margin-top: 2rem; 

59         } 

60  

61         input[type="range"] { 

62             width: 100%; 

63         } 

64  

65         .back-link { 

66             display: block; 

67             margin-top: 2rem; 

68             text-decoration: none; 

69             color: #555; 

70             font-weight: bold; 

71         } 

72  

73         #joystick { 

74             margin: 1rem auto; 

75             width: 200px; 

76             height: 200px; 

77             background: #eee; 

78             border-radius: 50%; 
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79             position: relative; 

80         } 

81     </style> 

82 </head> 

83 <body> 

84  

85 <header> 

86     <img src="{{ url_for('static', filename='astraeus_logo.png') }}" 

alt="ASTRAEUS"> 

87 </header> 

88  

89 <div class="container"> 

90     <h2>Manual Control</h2> 

91  

92     <div id="joystick"></div> 

93  

94     <div> 

95         <button class="control-btn" onclick="sendCommand('align1')">📍 

Align Panel 1</button> 

96         <button class="control-btn" onclick="sendCommand('align2')">📍 

Align Panel 2</button> 

97         <button class="control-btn" onclick="sendCommand('seq1')">▶️ 

Sequence 1</button> 

98         <button class="control-btn" onclick="sendCommand('seq2')">▶️ 

Sequence 2</button> 

99     </div> 

100  

101     <div class="slider"> 

102         <label for="speed">Speed:</label> 

103         <input type="range" id="speed" min="10" max="100" value="40" 

onchange="updateSpeed(this.value)"> 

104         <div id="speedDisplay">40%</div> 

105     </div> 

106  

107     <a class="back-link" href="{{ url_for('mode_selection') }}">← Back to 

Mode Selection</a> 

108 </div> 

109  

110 <script> 

111     function sendCommand(cmd) { 

112         fetch('/manual/command', { 

113             method: 'POST', 

114             headers: { 'Content-Type': 'application/json' }, 

115             body: JSON.stringify({ command: cmd }) 

116         }); 
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117     } 

118  

119     function updateSpeed(value) { 

120         document.getElementById('speedDisplay').innerText = value + '%'; 

121         fetch('/manual/speed', { 

122             method: 'POST', 

123             headers: { 'Content-Type': 'application/json' }, 

124             body: JSON.stringify({ speed: value }) 

125         }); 

126     } 

127 </script> 

128  

129 </body> 

130 </html> 

131  
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Appendix H.20 – mode.html 

This page allows users to select the rover's operating mode, Autonomous or Manual. Each option 

triggers a backend update to change the system mode and navigates to the corresponding control 

interface. The design ensures quick and intuitive mode switching with visual feedback. 

 

1 <!DOCTYPE html> 

2 <html lang="en"> 

3 <head> 

4     <meta charset="UTF-8"> 

5     <title>Mode Selection</title> 

6     <style> 

7         body { 

8             margin: 0; 

9             font-family: 'Segoe UI', sans-serif; 

10             background-color: #f4f4f4; 

11         } 

12  

13         header { 

14             background-color: black; 

15             text-align: center; 

16             padding: 1rem; 

17         } 

18  

19         header img { 

20             max-width: 100%; 

21             height: auto; 

22         } 

23  

24         .content { 

25             text-align: center; 

26             padding: 3rem 1rem; 

27         } 

28  

29         h1 { 

30             font-size: 2rem; 

31             margin-bottom: 1rem; 

32         } 

33  

34         .mode-btn { 

35             background: #007bff; 

36             color: white; 

37             padding: 1rem 2rem; 

38             margin: 1rem; 
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39             font-size: 1.1rem; 

40             font-weight: bold; 

41             border: none; 

42             border-radius: 8px; 

43             text-decoration: none; 

44             box-shadow: 0 4px 8px rgba(0,0,0,0.1); 

45             display: inline-block; 

46             transition: all 0.2s ease; 

47         } 

48  

49         .mode-btn:hover { 

50             background: #0056b3; 

51             transform: translateY(-2px); 

52         } 

53  

54         .manual-btn { 

55             background: #28a745; 

56         } 

57  

58         .manual-btn:hover { 

59             background: #1e7e34; 

60         } 

61  

62         .back-btn { 

63             background: #333; 

64         } 

65  

66         .back-btn:hover { 

67             background: #111; 

68         } 

69     </style> 

70 </head> 

71 <body> 

72  

73 <header> 

74     <img src="{{ url_for('static', filename='astraeus_logo.png') }}" 

alt="ASTRAEUS"> 

75 </header> 

76  

77 <div class="content"> 

78     <h1>Select Operation Mode</h1> 

79     <a href="{{ url_for('autonomous') }}" class="mode-btn" 

onclick="setMode('autonomous')">🧭 Autonomous</a> 

80     <a href="{{ url_for('manual_control') }}" class="mode-btn manual-btn" 

onclick="setMode('manual')">🎮 Manual</a> 
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81     <a href="{{ url_for('home') }}" class="mode-btn back-btn">← Back to 

Home</a> 

82 </div> 

83 <script> 

84 function setMode(mode) { 

85     fetch('/set_mode', { 

86         method: 'POST', 

87         headers: { 'Content-Type': 'application/json' }, 

88         body: JSON.stringify({ mode: mode }) 

89     }); 

90 } 

91 </script> 

92 </body> 

93 </html> 
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Appendix I – IEEE Code of Ethics 

The following clauses from the IEEE Code of Ethics were directly applied throughout Project Astraeus. 

 

1. To hold paramount the safety, health, and welfare of the public, to strive to comply with ethical design 

and sustainable development practices, and to disclose promptly factors that might endanger the public or 

the environment. 

 

3. To be honest and realistic in stating claims or estimates based on available data. 

 

5. To improve the understanding of technology, its appropriate application, and potential consequences. 

 

6. To maintain and improve our technical competence and to undertake technological tasks for others only 

if qualified by training or experience, or after full disclosure of pertinent limitations. 

 

7. To seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to 

credit properly the contributions of others. 

 

9. To avoid injuring others, their property, reputation, or employment by false or malicious action. 
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