

Department of Electrical and Computer Engineering Technology (ECET)

School of Engineering, Technology, and Advanced Manufacturing (ETAM)

EET 4950

Senior Design Project

Astraeus

Prototype Solar Support Rover

Submitted by:

Mark Figueroa & Pedro Cabrera

Supervised by:

Dr. Hall

July 18, 2025

 i

Abstract

Technology to explore other planets is continuously evolving, driven by engineers' relentless

curiosity about what humanity's potential will be beyond Earth. Mars stands as NASA’s key

focus for human exploration due to its potential to have once supported life and its significance

in deepening our understanding of Earth’s history, and perhaps even our future. NASAs initial

Mars missions, including the Viking program, provided fundamental knowledge for

understanding how to approach future man missions to the red planet. With plans to land on

Mars by the 2030s [1], advancements in rover technology will play a crucial role in supporting

humanity’s efforts to explore and survive on Martian soil.

 To support human missions beyond Earth, our goal is to design an autonomous rover

specifically for ensuring the reliability and efficiency of solar energy infrastructure in extreme

extraterrestrial environments. Dust accumulation on solar panels poses a significant threat to

sustained power generation, potentially compromising mission success. Our rover autonomously

navigates to designated solar panels based on crew commands, efficiently removing dust and

debris to restore optimal energy absorption. Once cleaning is complete, the rover logs

maintenance data, including timestamps and images, before returning to its docking station for

recharging. By streamlining solar panel upkeep and minimizing manual intervention, our system

enhances long-term exploration efforts and supports sustained human presence on Mars and

beyond.

 ii

Acknowledgements

We would like to extend our gratitude to everyone who has contributed to the success of the

Astraeus project. First and foremost, we would like to sincerely thank Dr. Hall, our advisor, for

her invaluable guidance and mentorship throughout this project. Her support and insights have

been instrumental in shaping our work.

We are grateful to Dr. Carbone for his expertise in planning our AI components and

providing valuable insights into the project’s scope, and to Dr. Britt for supplying Martian soil

through the UCF Exolith Lab for our testing.

A big thank you to Will Goodman for his continued support with ordering components

through Valencia College and supporting our ambitions for this project. Thank you to Thomas

Dillen for providing us with access to the Innovation Lab for prototyping and testing.

Finally, we would like to extend our gratitude to the judges who have taken the time to

evaluate our project. Their feedback and insights are invaluable in refining our work and pushing

us to achieve excellence.

This project would not have been possible without the contributions, guidance, and

encouragement of these individuals, and we are deeply thankful for their support.

 iii

Table of Contents

Abstract ... i

Acknowledgements .. ii

Table of Contents .. iii

List of Tables .. xi

Chapter 1 Introduction ... 1

1.1 Project Overview ... 2

1.2 Problem Definition ... 2

1.3 Project Objectives .. 3

1.4 Motivation ... 4

1.5 Project Requirements & Specifications ... 5

1.5.1 Engineering Requirements ... 5

1.5.2 Engineering Specifications .. 7

1.6 System Block Diagrams ...10

1.6.1 Full System Architecture ... 10

1.6.2 Power Distribution ... 11

1.6.3 Electromechanical Subsystem .. 12

1.6.4 Vision & Sensor Integration .. 12

1.7 Limitations ...13

1.7.1 Scale and Functionality .. 13

1.7.2 Component Selection ... 13

1.7.3 Autonomy & AI Capabilities ... 14

1.7.4 Panel Orientation Constraint .. 14

1.7.5 Testing Environment .. 14

1.7.6 Power and Runtime Constraints ... 14

1.7.7 Communication .. 14

1.8 Comparison of Existing Products ...15

 iv

1.9 Report Structure ...18

Chapter 2 Background Research ..20

2.1 Rocker-Bogie Suspension System ...21

2.1.1 3D Printing for Rocker Bogie Components ... 21

2.1.2 Implementing Rocker-Bogie .. 23

2.2 Martian Regolith Research ..24

2.3 Drive System & Motor Control ..25

2.3.1 Drive System .. 25

2.2.2 Motor Control .. 26

2.3 Robotic Arm & Cleaning Mechanism ..27

2.3.1 Arm Control and Integration .. 28

2.3.2 Cleaning Testing .. 29

2.4 Sensors & Vision ...31

2.4.1 Proximity Sensors .. 31

2.4.2 AI-Based Vision with HuskyLens ... 32

2.5 Control Platform and Software..33

2.5.1 Programming Languages and Software Architecture .. 34

2.5.2 Software Libraries and Dependencies .. 35

2.6 Navigations & Task Execution Algorithms ...36

2.6.1 Main System Flow ... 36

2.6.2 Manual Navigation Logic .. 37

2.6.3 Autonomous Navigation Logic .. 39

2.6.4 Panel 1 Cleaning Subroutine .. 41

2.6.5 Panel 2 Cleaning Subroutine .. 43

2.6.6 Full Cleaning Routine .. 45

2.7 Power Budget ...47

 v

Chapter 3 Contributions ..50

3.1 Main Chassis Contributions ..51

3.1.1 Structural framework and layout .. 51

3.1.2 Structural Design Features ... 52

3.1.3 Assembly and Dimensional Refinements .. 55

3.2 Cleaning Arm Contributions ...55

3.2.1 CAD Design & Mechanical Layout ... 56

3.2.1 Initial Servo Selection and Justification ... 57

3.2.3 Power Considerations .. 58

3.2.4 Robotic Arm CAD Design ... 59

3.2.5 Brush Cleaning Mechanism CAD Design ... 61

3.2.6 Arm & Electrical Integration ... 62

3.2.7 Servo Programing with Maestro Control Center ... 65

3.3 Rocker-Bogie Contributions ..66

3.3.1 Rocker-Bogie Design ... 67

3.4 Software Development ..70

3.4.1 Software Architecture Overview.. 70

3.4.2 Main Execution and Control Logic .. 71

3.4.3 Manual Control System ... 75

3.4.4 Autonomous Navigation and Tag Alignment .. 78

3.4.5 Motor and Movement Control ... 84

3.4.6 Sensor Integration and Obstacle Detection .. 87

3.4.7 External Subsystem Control ... 89

3.4.8 Event Logging and Dashboard Interface .. 90

3.4.9 Safety and Fail-Safe Mechanisms .. 96

3.4.10 Modular Design and Scalability ... 97

Chapter 4 Non-Technical Issues ...99

 vi

4.1 Project Timeline ... 100

4.1.1 Proposal Phase (Spring 2025) .. 100

4.1.2 Design Phase (Summer 2025) .. 104

4.2 Budget .. 107

4.3 Environmental Aspects ... 112

4.4 Health and Safety Considerations .. 112

4.5 Ethical Aspects ... 113

4.6 Sustainability Considerations .. 113

Chapter 5 Conclusion... 115

5.1 Summary and Conclusion ... 116

5.1.2 Robotic Arm Performance and Brush Results ... 116

5.1.2 Autonomous Capabilities Results .. 118

5.2 Suggestions for Future Work ... 119

5.2.1 Solar Panel Efficiency Monitoring... 120

5.2.2 Self-Docking Charging Station .. 120

APPENDICES ... 123

Appendix A – Email Correspondence .. 124

Appendix B – VNH5019 Datasheet ... 125

Appendix C – Maestro Servo Controller User Guild .. 132

Appendix D – Solartech SPM030P-WP-F data sheet ... 137

Appendix E – GP2D120 Datasheet .. 139

Appendix F – Raspberry Pi 3 Model B .. 144

Appendix G – Maestro Code Script ... 147

Appendix H – Astraeus Source Code ... 154

Appendix H.1 – start_all.py .. 154

Appendix H.2 – main.py ... 156

 vii

Appendix H.3 – autonomy.py ... 159

Appendix H.4 – motors.py .. 171

Appendix H.5 – sharp_sensors.py ... 174

Appendix H.6 – visual_module.py ... 177

Appendix H.7 – maestro_module.py .. 179

Appendix H.8 – logger.py ... 181

Appendix H.9 – shared_state.py ... 182

Appendix H.10 – command_center.py.. 183

Appendix H.11 – failsafe_manual.py ... 184

Appendix H.12 – init_db.py .. 187

Appendix H.13 – app.py ... 188

Appendix H.14 – joystick.js .. 191

Appendix H.15 – home.html ... 193

Appendix H.16 – index.html ... 195

Appendix H.17 – autonomous.html .. 200

Appendix H.18 – log_table.html ... 203

Appendix H.19 – manual.html .. 205

Appendix H.20 – mode.html ... 209

Appendix I – IEEE Code of Ethics .. 212

Group Members .. 213

 viii

List of Figures

Figure 1. Full System Block Diagram ... 11

Figure 2. Power Distribution Block Diagram .. 11

Figure 3. Electromechanical Block Diagram ... 12

Figure 4. Vision & Sensor Module Block Diagram... 13

Figure 5. Opportunity Rover .. 16

Figure 6. Curiosity Rover Radioisotope Thermoelectric Generator .. 16

Figure 7. SolarCleano F1 ... 17

Figure 8. Rocker-bogie Suspension System Range of Contact ... 21

Figure 9. Overture PETG 1.75mm 3D Printer Filament .. 22

Figure 10. CAD model of the rocker-bogie suspension... 23

Figure 11. Martian Regolith ... 24

Figure 12. Geartisan DC 12V 100RPM Gear Motor ... 26

Figure 13. VNH5019 Motor Driver Carrier ... 26

Figure 14. 25kg-DS3225 High-torque Digital Servo ... 27

Figure 15. ANNIMOS 45 kg High-torque Digital Servo... 27

Figure 16. 55g High-torque Digital Servo ... 28

Figure 17. N20 75:1 12V Micro Gear Motor ... 28

Figure 18. Mini Maestro 12-Channel USB Servo Controller .. 29

Figure 19. Solartech SPM030P-WP-F Polycrystalline Panel .. 30

Figure 20. Sharp GP2D120 Infrared (IR) Proximity Sensors .. 31

Figure 21. ADS1115 16-bit analog-to-digital converter .. 32

Figure 22. HuskyLens AI Camera ... 32

Figure 23. Raspberry Pi 3 Model B ... 33

Figure 24. Main Flowchart ... 37

Figure 25. Navigation Process Flowchart .. 38

Figure 26. Alignment Process Flowchart ... 40

Figure 27. Panel 1 Cleaning Flowchart .. 42

Figure 28. Panel 2 Cleaning Flowchart .. 44

Figure 29. Clean All Flowchart.. 46

Figure 30. Botku 12 30Ah Lithium LiFePO4 Deep Cycle Battery ... 47

 ix

Figure 31. Corner Brackets on Print Plate ... 52

Figure 32. Main Chassis CAD Model .. 52

Figure 33. Rocker-Bogie Mounting Hubs.. 53

Figure 34. Base Rotation Servo Mount .. 53

Figure 35. Robotic Arm Baseplate & Lazy Susan Integration .. 54

Figure 36. Battery Tray Integration ... 54

Figure 37. Main Chassis Assembled .. 55

Figure 38. Initial Robotic Arm CAD Model (Proposed Design) .. 56

Figure 39. Robotic Arm single-sheer joint... 60

Figure 40. Revised Robotic Arm .. 60

Figure 41. ECOMAID Brush Compatible for iRobot Roomba ... 61

Figure 42. Bevel Gear Mechanism CAD Model.. 62

Figure 43. Wrist Rotation Mechanism CAD Model .. 62

Figure 44. 4-inch Lazy Susan .. 63

Figure 45. DC-DC Stepdown Regulator 6-40V into 1.2-36V 20A out 63

Figure 46. Maestro & VNH5019 Wiring ... 64

Figure 47. Arm & Brush Fully Assembled .. 64

Figure 48. Astraeus Wheel ... 67

Figure 49. Rocker-Bogie Assembly (Right) .. 68

Figure 50. Full Rocker Boggie Assembly .. 69

Figure 51. Shared dictionary setup in start_all.py for inter-process communication 72

Figure 52. Dual-process launch for Flask and control loop in start_all.py 72

Figure 53. Main control loop in main.py handling mode-based task delegation 73

Figure 54. Manual command and speed retrieval from shared memory in main.py 73

Figure 55. Task check and autonomous execution trigger in main.py .. 74

Figure 56. Command access functions in command_center.py using shared memory 74

Figure 57. Route in app.py to receive manual movement commands. .. 76

Figure 58. Speed update route in app.py for manual mode. .. 76

Figure 59. Local inclusion of nipplejs in the HTML interface. ... 77

Figure 60. JavaScript function sending movement commands to Flask. 77

Figure 61. Mode selection route in app.py... 78

 x

Figure 62. main.py triggers run_autonomy() when a task is detected. .. 79

Figure 63. Detection and buffering of April Tag data in visual_module.py. 80

Figure 64. Smoothed average output of tag data to stabilize alignment. 81

Figure 65. Task sequence for "panel1" in autonomy.py, showing tag detection and alignment

steps, with fallback to manual mode if either stage fails. ... 84

Figure 66. _set_single_motor() applies a direction and PWM value based on the requested

speed. .. 85

Figure 67. Centralized drive command routing in motors.py for manual input handling. 86

Figure 68. Fine-grained motor control in autonomous tag tracking. ... 87

Figure 69. Voltage-to-distance conversion used to interpret raw Sharp sensor readings. 88

Figure 70. Exponential moving average (EMA) for smoothing noisy distance data. 88

Figure 71. Emergency stop routine triggered when a nearby object is detected. 89

Figure 72. Function to trigger subroutine execution on the Pololu Maestro via serial command.

... 90

Figure 73. Home Tab here to show the starting point of the UI. ... 91

Figure 74. Select Operation Mode screen. ... 92

Figure 75. Manual Mode Control Interface with Joystick after this paragraph. 92

Figure 76. Autonomy Mode Selection Screen here. .. 93

Figure 77. Full Log Table View (All Levels) .. 94

Figure 78. Warnings Filtered View.. 94

Figure 79. Alerts Highlighted in Red ... 95

Figure 80. Load Older Log Button, no new messages were available at the time so no “New

Message” Pop up... 95

Figure 81. Key-mapping dictionary in failsafe_manual.py that defines manual control input

using standard keyboard keys. .. 97

Figure 82. Panel Section 1 Cleaned ... 117

Figure 83. Panel Section 2 Cleaned ... 117

 xi

List of Tables

Table 1. Robotic Arm Engineering Requirements ... 6

Table 2. Navigation Engineering Requirements .. 7

Table 3. Drive System Specifications .. 8

Table 4. Cleaning Arm Specifications ... 9

Table 5. Power Module Specifications .. 10

Table 6. Product Comparison Table ... 18

Table 7. Mineral Composition of MGS-1 .. 24

Table 8. Solar Panel Comparison ... 30

Table 9. List of Libraries Used... 35

Table 10. Proposed Power Budget ... 48

Table 11. Comprehensive Power Budget ... 49

Table 12. Robotic Arm Servo Specifications ... 57

Table 13. Revised Robotic Arm Servo Specifications ... 57

Table 14. Spring Timeline .. 100

Table 15. Spring Gantt Chart (Proposal Phase) ... 102

Table 16. Senior Design (Proposed) Gannt Chart .. 103

Table 17. Spring Timeline .. 104

Table 18. Spring Gantt Chart ... 106

Table 19. Contributions Table .. 107

Table 20. Proposed Budget .. 108

Table 21. Final Comprehensive Budget ... 110

 1

Chapter 1 Introduction

Introduction

1.1 Project Overview

1.2 Problem Definition

1.3 Project Objectives

1.4 Motivation

1.5 Engineering Requirements & Specifications

1.6 Block Diagrams

1.7 Limitations

1.8 Comparison of Existing Products

1.9 Report Outline

Summary

In this chapter, we introduce the Astraeus project, an autonomous prototype rover

designed to clean solar panels on Mars using a 5-axis robotic arm. The motivation for this

design stems from the critical need to maintain solar efficiency in extraterrestrial

environments, where dust accumulation poses a significant threat to power generation.

This chapter defines the problem, outlines the project’s objectives, and presents the

engineering specifications and block diagram of the system. It also compares Astraeus to

existing solutions and describes the organization of the remainder of the report.

 2

1.1 Project Overview

Astraeus is an autonomous prototype rover developed to demonstrate the feasibility of robotic

solar panel cleaning in conditions analogous to those found on the Martian surface. As solar

energy remains one of the most practical and sustainable power sources for planetary missions,

maintaining consistent panel efficiency is critical to ensuring mission success. However, on

Mars, atmospheric dust storms and loose surface particles pose a continual threat to solar panel

performance by reducing light absorption through fine dust accumulation.

The Astraeus project addresses this challenge by proposing a compact, AI-guided robotic

system capable of autonomously identifying solar panels, navigating unstructured terrain, and

executing cleaning operations using a precision-controlled robotic arm. The system is engineered

to operate independently, without real-time human input, enabling reliable and repeatable

maintenance in future off-world solar farms or mission-critical infrastructure.

Designed specifically for Earth-based testing, the prototype operates under realistic

power, mobility, and sensing constraints. It utilizes MGS-1 Martian regolith simulant for dust-

based testing and simulates extraterrestrial terrain challenges. The chassis features a rocker-bogie

suspension system to support traversal over uneven ground. A Raspberry Pi 3 Model B serves as

the main control platform, integrated with a HuskyLens AI camera for visual panel recognition

and alignment.

All subsystems were developed with modularity and scalability in mind, enabling future

upgrades and adaptation to more demanding mission environments. Astraeus serves not only as a

proof-of-concept for solar panel cleaning robotics, but also as a foundation for the broader

development of autonomous surface maintenance technologies essential for sustained human

presence on Mars and beyond.

1.2 Problem Definition

As humanity prepares for long-term exploration and eventual settlement beyond Earth, the

establishment of reliable energy infrastructure becomes essential for sustaining surface

operations. On Mars, solar power is the most practical and scalable energy source due to its

availability and ease of deployment. However, the Martian environment presents a major

challenge: fine dust particles, carried by winds and storms in the planet’s low-pressure

atmosphere, which settle on solar panels and gradually degrade their efficiency.

 3

Without an effective cleaning strategy, this accumulation can severely reduce power

output over time, leading to energy shortages that compromise critical systems such as life

support, communications, and scientific instruments. While manual cleaning by astronauts is

theoretically possible, it is not sustainable. It would require extensive EVA time, present

operational risks, and divert personnel from higher-priority mission objectives.

To address this issue, the Astraeus project was conceived as a robotic solution for

autonomous solar panel cleaning on Mars. Astraeus is a mobile rover equipped with onboard

navigation, panel detection capabilities, and a precision-controlled dual-brush cleaning

mechanism. It can autonomously locate solar panels, align itself using onboard sensors and

vision systems, and remove surface dust without human intervention.

By automating this critical maintenance task, Astraeus significantly improves the

reliability and longevity of solar energy systems in extraterrestrial environments. This not only

reduces the risk to mission personnel but also supports the scalability of solar infrastructure for

future Martian habitats, research stations, and equipment deployments.

1.3 Project Objectives

The primary objective of Astraeus is to enhance the sustainability of long-duration Mars

missions by maintaining the performance of solar energy infrastructure. Solar power is projected

to be the primary energy source for off-world operations, and uninterrupted energy absorption is

critical to sustaining life support systems, communication networks, and scientific

instrumentation on the Martian surface.

Astraeus addresses the operational challenge of dust accumulation on solar panels, one of

the primary limitations of previous solar-powered Mars missions. Designed as an autonomous

rover, Astraeus actively monitors and cleans solar arrays without requiring astronaut

intervention. This reduces risk and workload for human crews while improving energy system

reliability and overall mission productivity.

The rover demonstrates autonomous cleaning functionality in an Earth-based test

scenario using MGS-1 Martian regolith simulant and terrain conditions selected to resemble

Martian surface challenges. Astraeus uses onboard vision systems to locate solar panels, aligns

itself using a combination of sensor feedback and QR code positioning, and activates a 5-axis

robotic arm to perform cleaning using dual counter-rotating soft brushes. Once cleaning is

 4

complete, the rover autonomously returns to its original location. Throughout the operation,

Astraeus functions independently, without the need for real-time external control or

supplemental power.

Additionally, the project integrates a robust system logging process that collects

diagnostic data during each cleaning cycle. This data informs future optimization of panel

maintenance strategies and supports the development of scalable robotic infrastructure for future

human settlement.

Astraeus is built with modularity and sustainability in mind. From its chassis and servo

layout to its battery system and software architecture, the rover is designed to support iterative

development and component-level upgrades. With a total system staying within budget, the

project demonstrates that essential support systems for space infrastructure can be prototyped

affordably, providing a foundation for future autonomous maintenance robotics on Mars.

1.4 Motivation

The success of planetary exploration missions depends heavily on the availability of reliable and

sustainable power systems. Among these, solar energy has emerged as the preferred source for

surface operations because of its accessibility, scalability, and simplicity of deployment.

However, maintaining a consistent energy output remains a significant challenge on Mars, where

fine dust particles regularly settle on solar panels. This buildup gradually reduces panel

efficiency and threatens the continuity of mission operations.

This challenge has already affected real missions. NASA’s Opportunity rover, which

operated well beyond its expected lifespan, ultimately ceased functioning after a global dust

storm covered its solar panels. Without a method to clean them autonomously, the rover lost

power and was unable to recover. This event marked the end of a historic mission not because of

mechanical failure but due to the absence of a maintenance system to sustain its energy supply.

As missions to Mars and other planetary bodies increase in complexity and duration, the

need for autonomous maintenance capabilities becomes increasingly important. Dependence on

solar energy will not be viable unless systems are in place to ensure continuous performance.

Manual servicing is often impractical or impossible due to time constraints, safety concerns, and

the limited availability of astronaut resources.

 5

The Astraeus project was developed in response to this critical need. It is based on the

idea that autonomous robotic systems must handle routine operational tasks to support scalable

and sustainable exploration. By addressing the specific issue of solar panel dust accumulation,

Astraeus serves as an early demonstration of robotic infrastructure that can support future

extraterrestrial missions. Its development is a first step toward enabling continuous surface

operations for research, habitation, and long-term exploration beyond Earth.

1.5 Project Requirements & Specifications

The engineering requirements and specifications presented here serve to narrow the project’s

scope and sharpen the focus of the Astraeus design efforts. By setting clear, measurable criteria,

these requirements provide essential guidance and boundaries that keep the project targeted and

manageable while ensuring alignment with its core objectives. This focused framework supports

informed decisions in component selection and system design, leading to a well-defined and

achievable engineering solution.

1.5.1 Engineering Requirements

The engineering requirements for Astraeus define the functional and performance expectations

necessary for effective solar panel cleaning on Mars. These requirements ensure that the rover

can efficiently navigate, clean solar panels, and log performance data while maintaining system

reliability and energy efficiency. The requirements are categorized into two key subsystems: the

robotic arm cleaning system and the navigation system. Each requirement is assigned a priority

level, high for critical functions and medium for supporting capabilities, along with a

corresponding verification method.

Robotic Arm (Cleaning System)

The robotic arm is responsible for executing the cleaning function of the Astraeus rover

and was designed to operate autonomously with precision and control. Its performance is

defined by specific functional and verification requirements to ensure effective dust

removal and reliable data collection during testing. Table 1 below outlines the

engineering requirements established for the robotic arm and its integrated cleaning

system.

 6

Table 1. Robotic Arm Engineering Requirements

Robotic Arm (Cleaning system)

Level Requirements (Astraeus Shall...) Verification

High

Utilize a variable speed cleaning brush

with precise control over

speed and pressure to effectively clean

surfaces.

Demonstrate the brush operating

at steady speeds and document

the cleaning effectiveness at each

speed using controlled amounts of

debris on the testing surface.

Medium

Document the cleaning of the solar panel

by logging the data for users to analyze

the performance of the rover.

The System must log all data in a

structured format, accessible

for further analysis.

Navigation Engineering Requirements

The navigation system enables Astraeus to operate autonomously by detecting and

avoiding obstacles, identifying solar panel locations, and returning to its origin after

completing a cleaning cycle. This subsystem integrates sensor data and visual recognition

to support decision-making in real time. The engineering requirements for navigation

were developed to ensure the rover can perform these tasks reliably under simulated

mission conditions. Table 2 outlines the specific performance expectations and

verification methods for the navigation system.

 7

Table 2. Navigation Engineering Requirements

Navigation Engineering Requirements

Level Requirements (Astraeus Shall...) Verification

High

Autonomously determine its own path

to solar panels while avoiding

obstacles.

Conduct navigation test where the

rover reaches its destination without

collision in test trials.

Detect larger obstacles up to 40cm

without running into them without

human intervention.

Validate obstacle detection by

testing against various obstacle

sizes and distances.

Recognize visual cues such as QR

codes, distinct shapes, or colored

markers to identify target zones.

Position various April Tag markers for the dedicated

panel site and base position. Run various tests where

Astraeus must correctly identify and navigate

towards each unique marker using its on board

vision system.

Medium
Return to the starting position without

any human intervention.

Conduct various tests, verify Astraeus successfully

navigates back to its start point after completing its

cleaning task with no manual correction.

1.5.2 Engineering Specifications

The Astraeus project is designed to meet a precise set of engineering specifications that ensure

optimal performance and reliability in its intended application. These specifications serve as the

foundational requirements guiding the selection of components, system architecture, and overall

design choices. The following table outlines the detailed specifications for key aspects such as

mobility, power, sensing, and manipulation capabilities. Following this, a comprehensive

overview of the selected parts will demonstrate how each component aligns with and fulfills

these stringent requirements to create a cohesive and effective robotic system.

 8

Table 3. Drive System Specifications

Drive System Specifications

Module Component
Engineering

Specifications
Justification

Electro-

Mechanical

Module

Motors (x6)

- 12V DC

- Peak Current: 15 A

- Gearbox Output: ~100

RPM

- High torque output to support

rover mobility and terrain

traversal.

- Geared motors reduce speed for

increased

torque.

Motor Drivers

- Rated for 12V motor

operation.

- Supports bidirectional

speed control

for 6 motors.

- Enables independent control of

left/right motor groups.

- Required to safely and

efficiently drive multiple motors

under load.

Control

Module

Microcontroller

- Minimum 12 PWM-

capable pins

- Supports UART, I²C

for peripherals

- Required for precise motor

control and servo actuation.

- Must support communication

with sensors and

AI camera.

IR Analog

Distance Sensor

- Voltage: 5V

- Current Draw:

~30 mA

- Range: up to 31 cm

- Used for edge detection and

alignment with

solar panel.

- Enables basic obstacle

avoidance and correction.

AI camera

- Supports onboard

object tracking via AI

- Compatible

UART/I²C

- Captures and analyzes solar

panel position for

autonomous alignment.

- Enables visual feedback loop

for positioning

system.

 9

Table 4. Cleaning Arm Specifications

Cleaning Arm

Module Component
Engineering

Specifications
Justification

Electro-

Mechanical

Module

Servo

- Torque: 25 kg

- Voltage Range: 4.8V

– 7.4V

- Stall Current: ~3.5 A

- Strong enough for base rotation.

- Uses PMW control.

- IP67 rated.

Servo

- Torque: 45 kg

- Voltage Range: 6.0 V

– 8.4 V

- Stall Current: ~3.5 A

- Strong enough for shoulder rotation.

- Uses PMW control.

- IP67 rated.

Servo

- Torque: 45 kg

- Voltage Range: 6.0 V

– 8.4 V

- Stall Current: ~3.5 A

- Strong enough for elbow rotation.

- Uses PMW control.

- IP67 rated.

Servo

- Torque: 25 kg

- Voltage Range: 4.8V

– 7.4V

- Stall Current: ~3.5 A

- Strong enough for wrist tilt.

- Uses PMW control.

- IP67 rated.

Servo

- Torque: 55g

- Voltage Range: 4.8V

– 7.4V

- Stall Current: ~3.5 A

- Strong enough for wrist rotation.

- Uses PMW control.

- IP67 rated.

Micro-Metal

Gear Motor

- Gear Ratio: 75:1

- Voltage Range: 3V –

9V

- Stall Current: ~1.6 A

- Provide sufficient torque to rotate

cleaning brush through dust/debris.

- Compact size to fit within brush

housing.

Control

Module

Servo

Controller

- 6 servo channels (12-

bit resolution)

- Logic voltage: 5V

- Control via USB,

UART (TTL)

- Enables precise control of up to 6

servos.

- USB and UART options allow easy

integration

with microcontrollers or PC.

- Built-in scripting for autonomous

sequences

without a host controller.

 10

Table 5. Power Module Specifications

Power Module Specifications

Module Component
Engineering

Specifications
Justification

Power

Module

Drive System

Battery
12V 30Ah

- Provides sufficient current and

capacity to

operate the full drive system for at

least 1 hour.

Voltage regulator

(Step Down)
12V to 6V regulator - Powers subsystems requiring 6V.

Voltage regulator

(Step Down)
12v to 5V regulator

- Powers 5V logic devices like

sensors, camera modules, and

microcontroller.

1.6 System Block Diagrams

The following block diagrams illustrate the major subsystems of Astraeus and how they

interconnect within the rover’s control architecture. These visual tools clarify data and power

flow, assist in modular design, and serve as technical references during integration and

troubleshooting. Each diagram focuses on a different aspect of the system, including full system

architecture, power distribution, electromechanical control, and computer vision.

1.6.1 Full System Architecture

The full system block diagram provides a high-level overview of all major subsystems and how

they interface with the central control unit. At the core of the system is the Raspberry Pi, which

handles communication, decision-making, and coordination across modules. Inputs from sensors,

including the HuskyLens AI camera and limit switches, feed into the Raspberry Pi for

processing. Outputs are sent to motor drivers, servo controllers, and actuators, enabling

autonomous movement and task execution. The block diagram clearly separates logical and

physical connections, showing how power and control signals are routed to different

components.

 11

Figure 1. Full System Block Diagram

1.6.2 Power Distribution

The power block diagram focuses specifically on how energy is distributed throughout the rover.

A 12V 30Ah lithium iron phosphate battery serves as the main power source. High-current loads

such as DC motors are driven directly from this source through VNH5019 motor drivers. Buck

converters are used to step down voltage for components that require lower operating levels,

such as the Raspberry Pi (5V), servo power rail (7V), and ADCs or logic-level interfaces (3.3V

or 5V). The diagram emphasizes safe current routing and system protection, including fuse

points and rail separation.

Figure 2. Power Distribution Block Diagram

 12

1.6.3 Electromechanical Subsystem

This diagram isolates the electromechanical module of Astraeus, showing how the drive system

and robotic arm are managed. The rocker-bogie suspension is powered by six DC motors

grouped into left and right sets, each set controlled by a dedicated VNH5019 motor driver. The

5-axis robotic arm is controlled via a Maestro servo controller, which receives PWM signals

from the Raspberry Pi and draws power from an independent 7V rail. The modular separation of

drive and manipulation components supports parallel development and simplifies

troubleshooting.

Figure 3. Electromechanical Block Diagram

1.6.4 Vision & Sensor Integration

The vision block diagram details how sensor inputs are integrated into the rover’s control logic.

The HuskyLens AI camera is the primary vision sensor, capable of recognizing objects, QR

codes, and shapes. It communicates with the Raspberry Pi I2C, depending on the selected

configuration. Additional digital and analog sensors, including Hall effect switches and limit

switches, feed into an ADC or directly into GPIO pins on the Raspberry Pi. This diagram

supports debugging of environmental perception and highlights how Astraeus navigates and

responds to its surroundings.

 13

Figure 4. Vision & Sensor Module Block Diagram

1.7 Limitations

The Astraeus prototype was intentionally scoped to balance both ambition and feasibility. To be

ensured the project remained achievable within the available time, budget, and resource

constraints. The limitations outlined below were not merely obstacles, but deliberate design

boundaries established to focus on core functionality, proof of concept, and our project timeline.

1.7.1 Scale and Functionality

Astraeus was designed as a scaled-down prototype to validate key engineering concepts

including rocker-bogie suspension, modular power systems, and solar panel cleaning. It does not

represent the full mechanical scale, ruggedness, or redundancy required for deployment on Mars.

The prototype focused on demonstrating subsystem integration rather than simulating the exact

environmental conditions of extraterrestrial operation.

1.7.2 Component Selection

To maintain affordability and accessibility, the team selected commercial off-the-shelf (COTS)

components, including hobby-grade servos, consumer microcontrollers, and non-radiation-

hardened sensors. While sufficient for a terrestrial prototype, these parts lack environmental

endurance, fault tolerance, and precision of space-grade electronics.

 14

1.7.3 Autonomy & AI Capabilities

Full AI-based navigation was outside the project’s scope. Instead, Astraeus uses QR code

detection for identifying solar panel targets and Sharp IR distance sensors to align precisely 10

cm away from the panel before initiating cleaning. This control sequence provides reliable

behavior in a controlled test setting but does not generalize to unstructured exploration, SLAM-

based mapping, or adaptive routing in dynamic environments.

1.7.4 Panel Orientation Constraint

To ensure mechanical stability and simplify cleaning arm operation, Astraeus was limited to

cleaning panels mounted at a fixed 45-degree angle. This orientation was chosen based on

physical testing constraints and recommendations from a NASA solar array specialist, who

affirmed that this is a reasonable starting point for early-stage prototyping. The specialist noted

that future Martian solar farms may include panels with variable orientations or sun-tracking

capabilities and suggested designing for cleaning adaptability in future versions [A].

(See Appendix A for the full email excerpt from NASA.)

1.7.5 Testing Environment

Terrain testing was performed on standard Earth surfaces with uneven obstacles. Although the

team obtained 1 kg of MGS-1 regolith simulant, full environmental testing in UCF’s Martian soil

pit was not completed due to a cost of $1200, which exceeded the project budget. The cleaning

brush was tested on MGS-1 applied to a test panel, but traction and suspension behavior on true

regolith-like terrain remains unverified.

1.7.6 Power and Runtime Constraints

The estimated power consumption was based on the final comprehensive power budget, and the

system was powered by a 12V, 30Ah LiFePO₄ battery. However, extended runtime tests beyond

two hours were not performed. Testing focused on short-duration functional sequences. Battery

degradation, thermal behavior, and peak surge response were not assessed under prolonged use.

1.7.7 Communication

Astraeus uses a local server configuration hosted on the onboard Raspberry Pi, which serves a

custom web interface for system control and monitoring. This architecture allows for direct

 15

interaction through any device connected to the same local network, either via a hotspot hosted

by the Pi itself or an external Wi-Fi access point. While this method is efficient for short-range

testing and demonstration, it limits the rover’s operational range to areas with controlled wireless

access.

This setup does not support long-range wireless communication, remote telemetry, or

autonomous data uplink capabilities such as those required in actual planetary missions. For this

reason, real-time communication and system diagnostics were restricted to line-of-sight

operation within a lab or field test environment. Implementing true remote telemetry would

require additional hardware such as LoRa, cellular, or satellite modules, which were beyond the

scope of this project.

1.8 Comparison of Existing Products

Astraeus represents a significant departure from previous Mars rovers by focusing on

infrastructure support rather than scientific exploration. Traditional Mars rovers, such as

Opportunity (MER-B) and Curiosity, were primarily designed for planetary research and were

equipped with scientific instruments to analyze Martian soil, rocks, and atmospheric conditions.

While these missions provided invaluable scientific insights, they were not intended to support or

maintain infrastructure critical to human survival. In contrast, Astraeus offers a practical, robotic

solution to a real operational challenge: dust accumulation on solar panels, which has historically

limited the viability of solar energy on Mars.

Mars rovers like Opportunity (MER-B) (Fig. 5) relied on solar panels for power, but

ultimately suffered due to dust buildup, which reduced energy intake and led to mission failure

[1]. Despite its robust design and autonomous capabilities, Opportunity had no built-in cleaning

system, and the rover solely depended on unpredictable Martian wind events to clear its solar

panels, which ultimately limited its operational lifespan. This demonstrated a major flaw in

sustaining solar-powered operations on Mars.

 16

Figure 5. Opportunity Rover

 When up against Curiosity Rover (Fig. 6), the comparison highlights a different

philosophy. Curiosity avoided this issue altogether by switching to a Radioisotope

Thermoelectric Generator (RTG) for power, eliminating the need for solar panels altogether.

Figure 6. Curiosity Rover Radioisotope Thermoelectric Generator

While effective, RTGs are not scalable or ideal for manned missions due to limited fuel

availability, safety concerns, and their complexity. This shift away from solar was not because

solar is unviable but because we lacked a way to maintain solar systems in Martian conditions.

This is where Astraeus becomes essential. While it does not generate power itself, Astraeus is

designed to maintain large-scale solar farms on Mars, which would be critical to powering

habitats, research stations, and equipment in future human missions. Its dual rotating brush arms

 17

with static charge assist actively remove dust from panel surfaces, solving the exact problem that

ended solar-reliant missions like Opportunity. Astraeus also uses a rocker-bogie suspension

system, a proven design used on Opportunity and Curiosity, for navigating rocky, uneven

Martian terrain. However, unlike its multi-million-dollar predecessors, Astraeus is built at a

small-scale prototype cost of just $770, demonstrating that functional, effective solutions can be

developed cost-efficiently and scaled up for future use.

In comparison with commercial solutions like the SolarCleano F1 (Fig. 7). Astraeus also

holds a distinct advantage for specific use cases. The SolarCleano F1 is a high-end product

designed for large-scale solar farms, costing between $30,000 to $50,000+ and typically

requiring manual or remote control. Astraeus fills a unique niche by adapting space-proven

mobility and navigation systems to create an autonomous Martian cleaning robot, specifically for

enabling sustainable solar infrastructure.

Figure 7. SolarCleano F1

Astraeus is a forward-thinking solution to one of the most pressing challenges facing

future Martian exploration. By addressing the issue of dust accumulation on solar panels,

Astraeus enables the long-term viability of solar infrastructure, which is essential for powering

habitats, equipment, and life-support systems in manned missions. Its low cost, proven mobility

system, and autonomous cleaning capability position it as a critical piece of future Mars mission

success.

 18

Table 6. Product Comparison Table

Astraeus Comparison Table

System Power Source Mobility Cost
Ability to Clean

Solar Panels
Drive System

Astraeus

12V 30Ah

Lithium-ion

battery

Rocker-bogie

suspension with

obstacle avoidance

~$770

(prototype)

Dual rotating brush

arm with static

charge assist

6 × 12V DC

geared motors

(skid steering)

Opportunity

(MER-B)

Triple-junction

solar panels

(~140W init.)

Rocker-bogie

suspension,

autonomous

navigation

~$400 million

(NASA)

Relied on Martian

wind/dust devils

6

independently

driven motors

Curiosity

Rover

Radioisotope

Thermoelectric

Generator

(RTG)

Rocker-bogie

suspension with

enhanced

navigation

~$2.5 billion

(NASA)

Using nuclear

power, no need for

panel cleaning

6-wheel

independent

drive with

steering

motors

SolarCleano

F1

Swappable

battery pack

(3–4 hr

runtime)

Modular wheeled

chassis,

remote/manual

control

~$30K–$50K+

(estimate)

Microfiber roller

brush with

adjustable pressure

Electric

wheeled drive

(human or

remote)

1.9 Report Structure

This report is structured to comprehensively document the design, development, testing, and

analysis of the Astraeus autonomous solar panel cleaning rover. The report is organized into five

separate chapters, each addressing a critical stage of the engineering process, along with

appendices containing supplemental materials, datasheets, code, and reference documentation.

Chapter 1 – Introduction: This chapter outlines the project’s purpose, motivation,

engineering requirements, limitations, and a comparison of Astraeus with existing Mars

 19

and terrestrial systems. It also provides system block diagrams and discusses the rationale

for each major design decision.

Chapter 2 – Background Research: This section presents the technical and scientific

research that informed the design of Astraeus, including studies on rocker-bogie

suspension, Martian regolith properties, robotic arm mechanisms, vision systems, and the

control platform. It also includes the power budget and algorithmic flowcharts that

guided the system's logic.

Chapter 3 – Contributions: Chapter 3 details the individual contributions made to each

subsystem of Astraeus, including the chassis design, cleaning arm, rocker-bogie

integration, software development, and hardware-software interface. It breaks down each

design and assembly process along with programming considerations and testing

outcomes.

Chapter 4 – Non-Technical Issues: This chapter addresses the broader context of the

project, including scheduling and planning, budgeting, environmental considerations,

health and safety, ethics, and sustainability.

Chapter 5 – Conclusion: The final chapter summarizes project outcomes and discusses

system performance, including autonomous cleaning success and robotic arm

functionality. It also offers suggestions for future enhancements such as self-docking

stations and panel efficiency monitoring.

Appendices: The appendices contain relevant datasheets, email correspondence, Maestro

scripts, source code, and regulatory guidelines referenced throughout the report. These

materials support transparency, reproducibility, and technical depth.

 20

Chapter 2 Background

Research

Background Research

2.1 Rocker-Bogie Suspension System

2.2 Martain Regolith Research

2.3 Drive System & Motor Control

2.4 Robotic Arm & Cleaning Mechanism

2.5 Sensors & Vision

2.6 Control Platform and Programming Language

2.7 Navigations & Task Execution Algorithms

2.8 Power Budget

Summary

This chapter provides an in-depth discussion of the background research and technical

components involved in the development of Astraeus. It begins with an explanation of the rover’s

mechanical platform, including the rocker-bogie suspension system and drive architecture. The

chapter then examines the robotic arm and cleaning mechanism used to interact with the panel

surface, followed by the sensors and AI-based vision system used for object detection and task

alignment. Control strategies and software implementation are also covered, including the

rationale for selecting Python and a Raspberry Pi as the main programming and control platform.

Finally, a detailed power budget is presented, demonstrating that the selected 12V 30Ah battery

provides sufficient energy to support the rover through multiple operational cycles. Together,

these sections form a comprehensive overview of the design, logic, and feasibility behind the

autonomous operation of Astraeus.

 21

2.1 Rocker-Bogie Suspension System

The rocker-bogie suspension system is a foundational mechanism of Astraeus that was originally

developed by NASA's Jet Propulsion Laboratory (JPL) for the Sojourner rover, which successfully landed

on Mars as part of the Pathfinder mission in 1997. Since then, it has been used in every Mars surface

mission involving rovers, including Spirit, Opportunity, Curiosity, and Perseverance. This system was

selected for Astraeus because of its exceptional terrain adaptability, passive stability, and proven heritage

in extraterrestrial environments.

 Unlike conventional suspensions that use springs or shock absorbers, the rocker-bogie system

distributes the rover’s weight equally across six wheels, connected by rocker arms and bogie links. These

components are joined by a passive differential that allows each side of the suspension to move

independently. This design offers two very critical advantages. First, the pressure each independent wheel

applies to the ground is balanced or equilibrated [5], which is especially important on soft or loose terrain

like Martian regolith. Excessive pressure from any single wheel could cause it to sink into the surface,

reducing traction and increasing power demand. Second, in rocky or uneven conditions, all six wheels

remain in contact with the ground and under load. This maximizes traction and propels the vehicle

forward, allowing it to climb over obstacles more effectively [6] (Fig. 8).

Figure 8. Rocker-bogie Suspension System Range of Contact

2.1.1 3D Printing for Rocker Bogie Components

3D printing plays a pivotal role in the fabrication of Astraeus’ rocker-bogie suspension system, aligning

with industry trends in aerospace and planetary exploration. Research into 3D printing in space has

demonstrated its feasibility for producing structural components using high-performance materials such

as titanium, carbon fiber-reinforced polymers (CFRP), PEEK, and ULTEM. These materials offer

excellent mechanical strength, thermal stability, and radiation resistance, making them suitable for long-

 22

term deployment in harsh extraterrestrial environments. Titanium has been explored for in-situ additive

manufacturing due to its high strength-to-weight ratio and corrosion resistance, while CFRPs are favored

for their durability and low mass in aerospace structures.

Although such advanced materials are ideal for actual space missions, the Astraeus prototype is

designed for Earth-based testing and demonstration. As a result, PETG (polyethylene terephthalate

glycol-modified) was selected for the fabrication of the rocker-bogie system and other structural elements.

PETG offers an ideal compromise between mechanical performance, printability, and cost. Compared to

more specialized aerospace polymers like PEEK or ULTEM, PETG can be printed with standard FDM

3D printers without requiring specialized high-temperature equipment. It provides better impact resistance

than PLA and improved dimensional stability over ABS, which is critical for ensuring consistent

geometry in mechanically loaded parts such as rocker arms, joint housings, and suspension brackets.

Figure 9. Overture PETG 1.75mm 3D Printer Filament

To ensure the durability of the rocker-bogie components under testing conditions, all PETG parts

were printed using a reinforced configuration: 4 perimeter walls and 45% infill. This setting strikes a

balance between strength and material usage, allowing the printed components to handle torsional and

impact stresses experienced during navigation testing. By using PETG, customized components specific

to the Astraeus rover’s rocker-bogie geometry were able to be rapidly printed and revised throughout the

project’s development. This flexibility proved invaluable during prototyping and assembly, allowing parts

to be revised and reprinted as the design evolved. Although PETG would not be suitable for direct space

 23

deployment due to limitations in thermal and radiation tolerance, it serves effectively in this phase of the

project by enabling efficient, low-cost development of functional prototypes.

2.1.2 Implementing Rocker-Bogie

For Astraeus, the rocker-bogie system was chosen to provide these same mechanical benefits in a smaller-

scale Earth-based prototype. The rover’s mobility platform was constructed using 1-inch PVC pipe for the

suspension arms and 3D-printed PETG components for joints and wheel mounts. This lightweight,

modular construction replicates a rocker-bogie system’s mechanical behavior while remaining within

fabrication and budget constraints.

The stability by using the rocker-bogie system is essential for Astraeus’ ability to clean solar

panels. Because the rover must approach and clean solar panels mounted at a 45-degree angle, the

suspension ensures that it remains level and balanced during arm deployment and cleaning. All six wheels

stay grounded even when the front of the rover rises slightly to reach the panel, minimizing vibration or

drift that could interfere with precision cleaning. Below is the complete CAD model within Fusion 360 of

the rocker-boogie implemented onto the Main Chassis (Fig. 10).

Figure 10. CAD model of the rocker-bogie suspension

This design incorporates the 1-inch PVC suspension arms, PETG 3D-printed joints, and firm

structural layout necessary to maintain balance and articulation across uneven terrain. While this specific

chapter focuses on the background and justification of the suspension system, the specific construction

process with details on material selection, joint design, and chassis integration is discussed in greater

detail within Chapter 4.

 24

2.2 Martian Regolith Research

To ensure that the rocker-bogie suspension system would perform effectively under Martian

terrain conditions, research and testing were conducted using MGS-1 (Fig. 11), a high-fidelity

Martian regolith simulant developed by the Exolith Lab at the University of Central Florida.

Martian regolith is known for its fine particulate size, angular grains, high abrasiveness, and

electrostatic properties, all of which create mobility and durability challenges for planetary

rovers.

Figure 11. Martian Regolith

The MGS-1 simulant closely replicates the geotechnical properties of Martian soil,

including particle sizes between 0.02 mm and 1 mm, angular basalt grains, and a bulk density

consistent with NASA site data. It is chemically formulated based on Mars Global Surveyor

findings and includes oxides such as SiO₂, Fe₂O₃, MgO, and CaO. The complete mineral

composition of the MGS-1 simulant is shown in Table 7.

Table 7. Mineral Composition of MGS-1

 25

Although the Exolith Lab offers access to a full-scale regolith testing pit, the quoted cost

for formal testing was approximately $1,200, which exceeded the project’s budget. Instead, the 1

kilogram of MGS-1 simulant was purchased through Space Resource Technology and used for

localized testing of the brush cleaning mechanism. The simulant was spread across an acrylic

solar panel surface to evaluate how effectively the rotating brush could remove particulate

buildup under realistic Martian dust conditions.

It is also important to mention that though mobility evaluation in the Exolith Lab’s

regolith test pit was originally planned, the cost for formal access and supervision was out of the

projects budget. As a result, the rocker-bogie system was instead tested on local terrain

simulating uneven Martian-like conditions using natural Earth ground. While this does not

replicate the mechanical drag or cohesion of Martian soil, it allowed the team to verify general

suspension behavior and climbing ability within budgetary limits.

2.3 Drive System & Motor Control

This section details the selection, arrangement, and control of the drive motors, the integration of

high-current motor drivers, and how the system can achieve reliable movement. The design

emphasizes durability, torque efficiency, and control simplicity, ensuring that Astraeus can

perform repeated traversal and obstacle negotiation tasks with precision and stability.

2.3.1 Drive System

The drive system of Astraeus consists of six Geartisan DC 12V motors (Fig. 12) [7] arranged in

three pairs, each driving a wheel within the rocker-bogie suspension. Each motor operates at

approximately 100 RPM under no load and can deliver the torque necessary to navigate rough

terrain. The six motors are organized into two groups of three motors wired in parallel, with each

group driving one side of the rover’s rocker-bogie suspension. Wiring motors in parallel ensures

uniform voltage across each motor while summing their current demands, providing

synchronized torque and smooth power distribution across the wheels.

 26

Figure 12. Geartisan DC 12V 100RPM Gear Motor

2.2.2 Motor Control

Control and power delivery to the motors are managed by two VNH5019 motor driver carriers,

each handling one group of three motors. VNH5019 drivers are well-suited for this application,

offering up to 12 A of continuous current per driver and built-in safety features such as thermal

shutdown and overcurrent protection [B]. These drivers enable bidirectional control and speed

modulation through PWM signals, which allows Astraeus to perform precise movements,

including smooth acceleration, deceleration, and direction changes [13].

(See Appendix B for VNH5019 Datasheet)

Figure 13. VNH5019 Motor Driver Carrier

 27

2.3 Robotic Arm & Cleaning Mechanism

Astraeus has a custom-designed 5-axis robotic arm that enables the rover to be able to perform

its panel-cleaning tasks. The arm is engineered to extend, position, and apply a duel spinning

brush mechanism to remove Martian regolith from solar panel surfaces.

The arm consists of five axes: base rotation, shoulder lift, elbow movement, wrist pitch,

and wrist yaw. These movements are powered by a combination of 25kg-DS3225 (Fig. 14) and

ANNIMOS 45 kg high-torque digital servos (Fig. 17), selected to meet the torque requirements

under load. A lightweight 55 g servo (Fig. 16) is dedicated to controlling the left and right tilt of

the wrist on the cleaning brush.

Figure 14. 25kg-DS3225 High-torque Digital Servo

Figure 15. ANNIMOS 45 kg High-torque Digital Servo

 28

Figure 16. 55g High-torque Digital Servo

The wrist-mounted cleaning tool features two N20 75:1 12V micro gear motors [9] (Fig.

17), which provide the rotational force needed to spin the brush effectively. These motors are

lightweight yet powerful enough to handle dust removal without adding significant inertia to the

arm’s end effector. Their compact form factor allows for a balanced and efficient design suitable

for dynamic arm movements.

Figure 17. N20 75:1 12V Micro Gear Motor

2.3.1 Arm Control and Integration

Servo control for the robotic arm is handled by a 12-channel Mini Maestro servo controller [10]

(Fig.18), which communicates via USB with the Raspberry Pi. This setup allows precise, multi-

axis control of all five servos using pre-programmed motion sequences or real-time commands.

Maestro’s built-in support for acceleration and speed parameters enables smooth motion

transitions and safe, synchronized joint operation during panel cleaning tasks.

(See Appendix C for Maestro Servo Controller user guild.)

 29

Figure 18. Mini Maestro 12-Channel USB Servo Controller

The dual N20 micro gear motors that spin the brush are powered by a dedicated

VNH5019 motor driver, independent from the Raspberry Pi. This driver is configured for

continuous operation during cleaning sequences and is activated through a separate control

system, which may include manual switches or preset logic depending on test conditions. By

isolating brush motor control from the main processor, the system avoids drawing excessive

current through the Pi and improves fault tolerance and modularity. This set up ensures reliable

control of both the robotic arm and the cleaning mechanism. By separating the high-current

brush motor driver from the logic-level servo system, Astraeus maintains safe and consistent

operation. The arm and brush work in tandem to complete autonomous cleaning cycles,

demonstrating the rover’s ability to perform maintenance tasks critically for long-duration

planetary exploration.

2.3.2 Cleaning Testing

Astraeus is intended to function as a prototype for solar panel maintenance on Mars, where dust

accumulation has historically degraded the performance of solar-powered missions. To

demonstrate cleaning functionality in an Earth-based environment, a Solartech Power W-Series

SPM030P-WP-F 30 W, 24 V polycrystalline solar panel [11] was used as the testing surface

(Fig. 19). Although this panel does not match the engineering standards of space-grade solar

arrays, it provides a practical and durable substrate for evaluating mechanical dust removal

systems. This panel was generously provided by the team’s project advisor, Dr. Hall, to support

development and performance testing of the cleaning mechanism. (See Appendix D for the

Solartech SPM030P-WP-F data sheet.)

 30

Figure 19. Solartech SPM030P-WP-F Polycrystalline Panel

The cleaning tests involved applying MGS-1 Martian regolith simulant to the surface of

the panel and activating the robotic arm’s brush mechanism to sweep across the array. Multiple

cycles were run to evaluate dust clearance, contact behavior, and bristle alignment. These trials

provided essential feedback for adjusting servo limits, brush torque, and arm positioning

accuracy.

A comparison between the demonstration panel and the types used in Mars missions such

as Spirit and Opportunity is shown in Table 8. While the flight-rated panels feature higher-

efficiency triple-junction materials and are engineered to withstand extreme environmental

conditions, the core issue of dust interference remains the same.

Table 8. Solar Panel Comparison

Feature

(Specs)

Solartech Power W-Series

SPM030P-WP-F

Mars Rover Solar Panels

 (e.g., Spirit & Opportunity)

Cell Type Polycrystalline silicon Triple-junction GaInP/GaAs/Ge

Power Output 30W Approximately 140W (initial)

Voltage 24V Variable

Efficiency Approximately 14-15% Higher Efficiency due to advanced

materials

Cleaning

System

None (Manually cleaned during

testing)

None; relied on natural wind

Durability Designed for terrestrial conditions Engineering for Martian

Environment

 31

2.4 Sensors & Vision

Astraeus is equipped with a robust combination of proximity sensors and vision systems to

support its autonomous navigation, obstacle avoidance, and target identification. These

components work in tandem with each other to provide real-time environmental awareness,

enabling the rover to navigate terrain safely and perform precise cleaning operations on solar

panels.

2.4.1 Proximity Sensors

Obstacle detection is primarily handled by Sharp GP2D120 infrared (IR) proximity sensors [12]

(Fig. 1\20), which provide reliable analog voltage outputs proportional to the distance of nearby

objects. These sensors are mounted around the rover’s chassis to detect obstacles in its path,

allowing Astraeus to dynamically adjust its speed and direction to avoid collisions during

traversal. (See Appendix E for GP2D120 Datasheet)

Figure 20. Sharp GP2D120 Infrared (IR) Proximity Sensors

Since the Raspberry Pi lacks native analog input capability, the IR sensors are interfaced

through an external ADS1115 16-bit analog-to-digital converter (ADC) (Fig. 21) [13]. This high-

resolution ADC accurately converts the analog voltage readings from the sensors into digital data

that the Raspberry Pi can interpret [9]. This allows for precise distance calculations and smoother

navigation behavior.

 32

Figure 21. ADS1115 16-bit analog-to-digital converter

Because the IR sensors operate at 5V logic, and the Raspberry Pi’s GPIO pins are only

rated for 3.3V, a logic level shifter is used to safely interface the two components. This ensures

that communication between the ADS1115 and the Raspberry Pi remains safe and reliable,

without risking damage to the Pi’s input circuitry.

2.4.2 AI-Based Vision with HuskyLens

Along with proximity sensing, Astraeus utilizes a HuskyLens AI camera (Fig. 22). This is a self-

contained vision module capable of performing real-time object detection and tracking [14]. The

camera uses built-in AI models to recognize visual cues enabling it to detect and follow towards

the solar panel located at the solar panel as a target.

Figure 22. HuskyLens AI Camera

 33

The Husky Lens communicates with the Raspberry Pi over UART, sending simplified

tracking data without requiring intensive image processing on the Pi itself. This greatly reduces

computational overhead while still enabling intelligent decision-making. During autonomous

operation, the data from the HuskyLens is used alongside the IR sensor input to continuously

refine the rover’s navigation path and panel alignment.

2.5 Control Platform and Software

The control module of Astraeus is built around the Raspberry Pi 3 Model B, a Linux-based

single-board computer that serves as the main platform for the entire system’s hardware control.

The Raspberry Pi handles all major subsystems including motor drivers, maestro servo

controller, and sensors, using standard digital communication protocols such as UART, I2C, SPI,

and general-purpose input and output [15].

(See Appendix F for Raspberry Pi 3 Model B Datasheet)

Figure 23. Raspberry Pi 3 Model B

Astraeus is programmed using Python, a versatile and widely supported language well-

suited for hardware control and rapid development. Python allows for clear, modular code

 34

structure and offers extensive libraries for communication and device integration. The project

makes use of libraries for GPIO control, USB communication with the Mini Maestro servo

controller, and I2C communication with the analog-to-digital converter that interfaces with the

infrared distance sensors.

2.5.1 Programming Languages and Software Architecture

The software implementation for the Astraeus rover system utilizes a combination of

programming languages, each selected for its specific strengths in handling embedded control,

user interface design, and data processing. The control logic, sensor integration, and

communication systems are primarily written in Python, while the front-end dashboard leverages

standard web technologies to enable real-time interaction with the system.

Python

Python was the principal language used for developing the rover’s backend control and logic

systems. The Raspberry Pi 3 executed all control scripts written in Python, managing motor

commands, sensor readings, and system behavior through various modules. Key functionalities

included:

• Motor control and PWM regulation (motors.py)

• Autonomous navigation and tag alignment (autonomy.py)

• Sharp infrared distance sensing via ADS1115 ADC (sharp_sensor.py)

• Visual target tracking using the HuskyLens I2C module (visual_module.py)

• Subroutine triggering for Pololu Maestro controllers (maestro_module.py)

• Parallel execution of the control loop and Flask server (start_all.py)

• Logging of events, warnings, and alerts to a persistent database (logger.py)

Python’s ease of integration, hardware compatibility, and multi-threading capabilities made it an

effective tool for rapid development and reliable hardware control.

Web Technologies (HTML, CSS, JavaScript)

To provide a clean and interactive user interface, standard web technologies were used to build a

dashboard accessible via any browser on the same local network. The interface included multiple

pages for different control modes and system status viewing:

 35

• HTML structured the web pages, including index.html, manual.html, and mode.html

• CSS was used for styling the user interface to ensure usability and responsiveness

• JavaScript, along with the nipplejs joystick library, enabled real-time manual control of

the rover and dynamic updating of system logs via AJAX

This frontend was served through Flask, allowing for real-time two-way communication between

the user and the rover.

SQLite

A lightweight SQLite database was integrated into the system to store all log entries. The

logger.py module handled automatic insertion of timestamped messages categorized by severity

(INFO, WARNING, ALERT). These entries were dynamically retrieved and displayed within

the dashboard interface, enabling operators to monitor rover activity and status over time.

2.5.2 Software Libraries and Dependencies

To support the functionality of the Astraeus system, a wide range of software libraries and

external packages were used. These libraries enabled hardware interfacing, I2C communication,

sensor data handling, multi-process execution, and server hosting. Below is a table of the key

libraries and their roles within the project:

Table 9. List of Libraries Used

Library Purpose

Flask
Hosts the dashboard web server and handles HTTP requests for

control and log viewing

gpiozero
Simplifies GPIO pin control for motor driver PWM and

direction switching

RPi.GPIO
Used in low-level GPIO testing and setup, such as in

blinka_test.py

smbus2
Enables I2C communication with peripherals like the ADS1115

ADC

 36

adafruit-circuitpython-

ads1x15
Interfaces with the ADS1115 module to read analog sensor data

multiprocessing
Allows concurrent execution of the control loop and Flask

server

sqlite3 Manages event logging through a local database system

nipplejs (JavaScript) Provides the virtual joystick interface for manual rover control

blinker
Supports signal handling between Flask components (optional

utility)

2.6 Navigations & Task Execution Algorithms

Astraeus performs its autonomous tasks using a modular control architecture composed of

independent yet interconnected software routines. These routines manage the rover’s navigation,

alignment, cleaning, and return sequences using sensor input and pre-programmed logic. To

visualize and guide this system-level behavior, a series of flowcharts were developed during the

proposal phase to represent the algorithms that define the rover’s operational logic at each stage.

These flowcharts are not only development tools but also serve as documentation for debugging,

testing, and future system upgrades.

2.6.1 Main System Flow

The main flowchart (Fig. 24) serves as the overarching control structure for Astraeus, outlining

the full sequence of operations from system initialization to shut down. Upon startup, the system

enters a calibration stage to ensure all hardware components are set to a known and stable state.

Following calibration, the vision system engages in detecting solar panels, preparing the rover

for either autonomous or manual operation. If autonomous control is selected, the system

transitions to a dedicated autonomy loop, while manual override allows human operators to

directly command the rover. Upon task completion or intervention, the shutdown routine is

executed to safely power down the system and reset components for future operations. This high-

 37

level flow defines how control logic is distributed across subsystems and ensures safe, modular

transitions throughout the mission.

Figure 24. Main Flowchart

2.6.2 Manual Navigation Logic

The manual control flowchart outlines how Astraeus interprets direct user input to execute

predefined commands. Upon receiving a command and associated speed value, the system

evaluates the type of instruction. If the command corresponds to an alignment procedure (e.g.,

"align1" or "align2"), it initiates the appropriate sequence and checks for successful completion.

If a failure is detected, the system logs an error and halts further execution.

If the command is a cleaning routine ("Seq1" or "Seq2"), the relevant cleaning sequence

is triggered. For all other inputs, the rover sends a basic drive command controlling direction and

speed. Once the instruction is executed, the command buffer is cleared, and the system is ready

 38

for the next manual input. This routine allows a human operator to assume direct control over

key rover functions for troubleshooting, calibration, or manual override operations. On the next

page is the corresponding flow chart for the manual navigation logic (Fig. 25).

Figure 25. Navigation Process Flowchart

 39

2.6.3 Autonomous Navigation Logic

The autonomy flowchart governs Astraeus' fully independent operation, enabling it to perform

tasks without human intervention. The process initiates autonomous path planning, where the

rover calculates an optimal route to the nearest solar panel using environmental inputs. As the

rover navigates, it continuously scans for obstacles using onboard sensors and vision algorithms,

dynamically adjusting its route as needed.

Upon arriving at the target, the system verifies the panel’s presence and transitions to the

cleaning phase. Once the cleaning task is complete, the rover initiates a return-to-base procedure,

ensuring it navigates back to its starting point. This flow encapsulates Astraeus' decision-making

capabilities, enabling it to handle variable terrain and perform tasks with high independence. The

corresponding flowchart for autonomous navigation logic (Fig. 26) is on the next page.

 40

Figure 26. Alignment Process Flowchart

 41

2.6.4 Panel 1 Cleaning Subroutine

The “Panel 1” flowchart (Fig. 27) defines the behavior of Astraeus when it is engaged in

cleaning the first solar panel in a multi-panel configuration. The routine begins by initializing the

cleaning arm and orienting the brush to align with the first edge of the panel. Once properly

aligned, the arm performs a single cleaning pass across a specific section of the panel. After the

sweep is completed, the system verifies the cleaning status of the segment and prepares to

transition either to the next section or the next panel. This modular approach ensures that

individual panels are addressed with precision and consistency, enabling repeatable and scalable

cleaning operations. The following flow chart for the cleaning process of panel 1 is shown on the

next page.

 42

Figure 27. Panel 1 Cleaning Flowchart

 43

2.6.5 Panel 2 Cleaning Subroutine

Like the logic in the Panel 1 sequence, the “Panel 2” flowchart (Fig. 28) manages the cleaning

process for a subsequent solar panel. The rover repositions itself and adjusts the arm alignment to

interface with the second panel. Once the panel is in position, the same cleaning sequence used

in the first panel is executed, ensuring consistent methodology across different panel targets.

After completing the task, the system logs the cleaning completion status, allowing the rover to

track progress and make decisions for further tasks. This flow supports Astraeus’ ability to

autonomously handle multiple panels during a single mission cycle.

 44

Figure 28. Panel 2 Cleaning Flowchart

 45

2.6.6 Full Cleaning Routine

The “Clean All” flowchart (Fig. 29) provides the operational logic for executing a complete

cleaning cycle of a detected solar panel. The sequence begins with initialization of the robotic

arm and brush to a predefined starting position. Once the panel is confirmed and aligned, the

panel is divided into discrete cleaning segments. The system then performs a looped sequence,

where each segment is cleaned methodically. After each pass, the system checks if all segments

have been addressed, and once cleaning is complete, the arm is retracted and stowed in its home

position. This structured process ensures that each panel is thoroughly cleaned using a consistent

and reliable pattern, optimizing coverage while minimizing mechanical strain.

 46

Figure 29. Clean All Flowchart

 47

2.7 Power Budget

A comprehensive power budget was developed to verify that the selected power source could

sustain all control, actuation, and sensor subsystems onboard Astraeus. The rover is powered by

a 12V 30Ah LiFePO₄ deep cycle battery, which provides 360 watt-hours (Wh) of energy storage

capacity (Fig. 30). This battery was chosen for its high energy density, flat discharge curve,

rechargeability, and safety advantages over traditional lithium-ion chemistry.

Figure 30. Botku 12 30Ah Lithium LiFePO4 Deep Cycle Battery

Before the system was fully integrated, a proposed power budget was drafted to guide hardware

selection, energy management, and subsystem distribution. This budget was based on datasheet values

and expected duty cycles for each module. Although adjustments were made during implementation, the

proposed budget served as a baseline for confirming that the selected power source could sustain all rover

operations. The proposal power budget is show below in Table 10 and the Finalized budget is shown in

Table 11.

 48

Table 10. Proposed Power Budget

Drive System Power

Component Voltage (V) Current (A) Power (W) Qty Total Power (W)

Greartisan 12V 100RPM Motors 12 1.1 13.2 6 79.2

VNH5019 Motor Driver Carrier 5 1 5 2 10

Total (W)

89.2

Control System Power

Component Voltage (V) Current (A) Power (W) Qty Total Power (W)

Raspbery Pi 3B 5 3 15 1 15

ESP32-CAM 5 0.5 2.5 1 2.5

Maestro Servo Controller 6 1 6 1 6

VNH5019 Motor Driver Carrier 5 1 5 1 5

HuskyLens AI 5 0.32 1.6 1 1.6

ADS1115 16 Bit ADC PGA Converter 5 0.03 5.03 1 5.03

Sharp IR Analog Distance Sensor 5 0.03 5.03 4 20.12

Total (W)

55.25

Robotic Arm Power

Component Voltage (V) Current (A) Power (W) Qty Total Power (W)

25kg Servos (Base & Shoulder) 6 3.5 21 2 42

20kg Servo (Elbow) 6 2.5 15 1 15

55g Servos (Wrist & Tilt) 6 2.5 15 2 30

Pololu 6V 100RPM Brush Motors 6 2 12 2 24

Total (W)

111

System Total (W)

255.45

Power Module

Component Voltage (V) Current (A) Power (W) Qty Total Power (W)

LiFePO4 Deep Cycle Battery 12 30Ah 360 Wh 1 360

Total (W)

360

 49

Table 11. Comprehensive Power Budget

Control Module Power

Component Voltage (V) Current (A) Power (W) Qty Total Power (W)

Raspbery Pi 3 Model B 5 3 15 1 15

VNH5019 Motor Driver Carrier 12 2.4 28.8 2 57.6

VNH5019 Motor Driver (Logic Supply) 3.3 0.04 0.132 2 0.264

VNH5019 Motor Driver Carrier 7 0.04 0.28 1 0.28

VNH5019 Motor Driver (Logic Supply) 3.3 0.04 0.132 1 0.132

Maestro Servo Controller 6 1 6 1 6

ADS1115 16 Bit ADC PGA Converter 5 0.03 5.03 1 5.03

Total (W)

77.63

Electro-Mechanical Module Power

Component Voltage (V) Current (A) Power (W) Qty Total Power (W)

Greartisan 12V 100RPM Motors 12 0.8 9.6 6 57.6

25kg Servos 7 2.5 17.5 2 35

45kg Servos 7 4.5 31.5 1 31.5

55g Servos (Wrist & Tilt) 7 0.4 2.8 1 2.8

N20 Micro Gear Motors 7 0.35 2.45 2 4.9

Total (W)

131.8

Vision Module Power

Component Voltage (V) Current (A) Power (W) Qty Total Power (W)

HuskyLens AI 5 0.32 1.6 1 1.6

Sharp IR Analog Distance Sensor 5 0.03 5.03 4 20.12

Total (W)

21.72

System Total (W)

231.15

Power Module

Component Voltage (V) Current (A) Power (W) Qty Total Power (W)

LiFePO4 Deep Cycle Battery 12 30Ah 360 Wh 1 360

Total (W)

360

 50

Chapter 3 Contributions

Contributions

3.1 Main Chassis Contributions

3.2 Cleaning Arm Contributions

3.3 Rocker-Bogie Contributions

3.4 Software Development

Summary

This chapter details the contributions made by each team member to the design and

development of Astraeus; a prototype solar support rover designed for future testing

in simulated Martian environments. Specifically, it outlines the technical progress

made in building the rover’s major mechanical components and documents the

decisions, modifications, and challenges faced throughout the design process.

 51

3.1 Main Chassis Contributions

This section outlines Mark’s contributions to the design, fabrication, and refinement of the

Astraeus main chassis. From early CAD modeling to physical assembly, the chassis underwent

multiple design iterations to support subsystem integration, mechanical stability, and long-term

modularity.

3.1.1 Structural framework and layout

The primary objective in designing the main chassis was to create a robust yet modular and

adaptable frame capable of supporting all subsystems of Astraeus. The structural skeleton was

built using 20 by 20-millimeter aluminum V-slot extrusions, chosen for their high strength-to-

weight ratio and compatibility with standardized M4 T-nuts and bolts. These extrusions provided

a versatile mounting platform for attaching mechanical subsystems, suspension components, and

electronics.

The entire chassis was modeled using Autodesk Fusion 360. Creating a fully integrated

CAD model enabled the team to visualize the complete system layout, plan subsystem

integration, and identify potential mechanical or spatial conflicts prior to physical assembly. The

model served as a reference throughout the build process, ensuring proper alignment and

accurate placement of critical components such as the rocker-bogie suspension, battery tray, and

arm mount.

To join the extrusions at structural intersections, custom corner brackets were designed

and 3D printed using PETG filament, as shown in Figure 20. PETG was selected for its excellent

mechanical strength, print reliability, and resistance to fatigue. The bracket geometry was

optimized to reduce print time and improve surface quality while maintaining the durability

needed to withstand repeated assembly, vibration, and operational stress. Their modular design

allowed for quick reprinting and field replacement when design adjustments were required.

 52

Figure 31. Corner Brackets on Print Plate

Once the bracket design was finalized, the complete frame was constructed in CAD (Figure 21).

The extrusion layout was carefully planned to maintain structural symmetry, maximize component

accessibility, and accommodate future expansion. The use of standardized hardware and open-slot rails

ensured that all subsystems could be securely mounted while retaining the flexibility to reposition or

replace them during later development phases.

Figure 32. Main Chassis CAD Model

3.1.2 Structural Design Features

Three key structural features were integrated into the chassis design to support the mechanical

integrity, modularity, and balance of the Astraeus rover during operation and testing. The rocker-

bogie suspension hubs that mount on both sides of the chassis serve as the primary pivot points

for the rocker arms. The rocker-bogie suspension hubs were mounted along both sides of the

 53

chassis and served as the main pivot points for the rocker arms. These hubs were attached to the

side rails using M4 T-nuts and bolts, allowing them to slide laterally during assembly for precise

alignment. To reinforce the structure and maintain symmetry, a crossbar made from a cut section

of 20 by 20-millimeter aluminum extrusion was installed to link the left and right hubs. This

mechanical linkage ensured synchronized movement across the suspension and prevented

uneven pivoting during traversal.

Figure 33. Rocker-Bogie Mounting Hubs

After finalizing the position of the suspension hubs, the crossbar extrusion was also

utilized as a mounting structure for the rotational base of the robotic arm. This dual-purpose

design allowed the servo responsible for base rotation to be anchored directly to the crossbar,

providing a rigid and centrally located foundation. The use of this existing structural element

reduced the need for additional material and helped integrate the robotic arm cleanly into the

rover’s overall layout.

Figure 34. Base Rotation Servo Mount

 54

To support rotation and reduce load on the base servo, a \mounting plate was added to the

top of the chassis. This plate spanned multiple extrusion rails and included a central cutout for

the arm’s main servo shaft. A four-inch lazy Susan bearing was incorporated beneath the plate to

reduce rotational friction, distribute load evenly, and improve stability during arm motion. The

widened geometry also allowed more mounting points to be used, which reduced flex and

improved the rigidity of the overall assembly during brushing operations.

Figure 35. Robotic Arm Baseplate & Lazy Susan Integration

To balance the overall weight of the rover, the battery tray was installed along the

internal rails of the frame. Mounted using M4 T-nuts and bolts, the tray could be shifted between

the front and rear of the chassis to compensate for changes in the center of gravity as additional

subsystems were added. This modular design made it possible to fine-tune the balance of

Astraeus during testing without requiring permanent structural changes.

Figure 36. Battery Tray Integration

 55

3.1.3 Assembly and Dimensional Refinements

During the initial assembly phase, several adjustments were made to improve structural stability,

ensure mechanical alignment, and accommodate shifting mass distribution as new subsystems

were integrated. Aluminum extrusions were trimmed and re-squared as needed to eliminate

minor inconsistencies and improve frame symmetry.

Figure 37. Main Chassis Assembled

Thinking ahead and compensating for the unknown mass distribution during early design

stages, the battery tray was mounted using M4 T-nuts and bolts, allowing it to slide along the

interior frame between the front and rear sections of the rover. This adjustment allowed for fine-

tuning of the center of gravity and simplified balancing the chassis as heavier subsystems such as

the arm and electronics were installed. Another enhancement made prior to the final assembly

was widening the mounting plate for the base of the robotic arm. By extending the plate across

more of the aluminum extrusion surface, additional mounting points could be secured, reducing

torsional stress during arm actuation. This change improved mechanical stability during brushing

sequences and minimized vibration.

3.2 Cleaning Arm Contributions

This section outlines Marks’ contributions to the development process of the Astraeus robotic

cleaning arm, from initial CAD modeling and servo selection to physical assembly, structural

reinforcement, and servo programming using the Maestro Servo Control Center.

 56

3.2.1 CAD Design & Mechanical Layout

The Astraeus robotic arm was conceptualized and modeled as a five-axis articulated arm, capable

of cleaning solar panels autonomously using a preprogramed sequence after the rover has aligned

with the panel. The CAD model, created using Autodesk Fusion 360, detailed each point of

articulation, including base rotation, shoulder and elbow articulation, wrist rotation, and a tilting

brush end-effector. The arm was designed to have a reach of approximately 27.5 inches which is

sufficient to clean a full 30W Solartech Power W-Series solar panel from a fixed chassis

position. Figure 27 below represents this initial design as it was presented during the proposal

phase.

Figure 38. Initial Robotic Arm CAD Model (Proposed Design)

The model accounted for servo selection, wiring clearances, and structural stability. The

base of the arm incorporated a high-torque servo mounted on a reinforced plate, supported by a

4-inch lazy Susan bearing to reduce axial load on the servo during arm movement. The model

also included mounting brackets, joint alignments, and spatial integration with the main rover

chassis. Because it was designed modularly, it made it easy for the design to undergo multiple

revisions for optimizing servo loads and clearances prior to assembly.

 57

3.2.1 Initial Servo Selection and Justification

Servo models were initially chosen based on their torque ratings and suitability for the load

experienced at each joint. The first configuration used DS3225MG 25kg·cm servos for the base

and shoulder joints, a DS3218MG 20kg·cm servo for the elbow, and MG996R servos for the

dual-axis wrist mechanism. The specifications for this original proposed design during the

previous semesters are provided in Table 12.

Table 12. Robotic Arm Servo Specifications

Servo Function Model Torque
Operating

Voltage
Stall Current

Rotation

Range

Base DS3225MG 25kg·cm (6V) 4.8V - 7.4V 3.5A 180°

Shoulder DS3225MG 25kg·cm (6V) 4.8V - 7.4V 3.5A 180°

Elbow DS3218MG 20kg·cm (6V) 4.8V - 6.8V 2.5A 180°

Wrist (U/D) MG996R 20kg·cm (6V) 4V - 6V 2.5A 180°

Wrist (L/R) MG996R
55g Metal Gear

Servo
4V - 6V 2.5A 180°

However, after physical testing and structural revisions, it became clear that higher-

torque servos were required to ensure reliable operation. The finalized configuration included

DS3235 servos at the base and shoulder, DS3225MGs at the elbow and wrist (U/D), and a

smaller DS3225MG handling wrist tilt (L/R) due to its lightweight load. The revised servo

specifications are summarized in Table 13.

Table 13. Revised Robotic Arm Servo Specifications

Servo Function Model Torque
Operating

Voltage
Stall Current

Rotation

Range

Base DS3235 25kg 7V ~2.5 A 180°

Shoulder DS3235 45kg 7V ~4.2 A 270°

Elbow DS3225MG 45kg 7V ~4.2 A 270°

Wrist (U/D) DS3225MG 25kg 7V ~2.5 A 180°

Wrist (L/R) DS3225MG 55g 7V ~0.4–0.5 A 180°

 58

3.2.3 Power Considerations

After finalizing the revised servo configuration for the robotic arm, it became critical to evaluate

whether the increased electrical load from the new servos, particularly at the shoulder and elbow

joints, would remain within the rover’s available power budget. The higher torque ratings of

these servos introduced greater current demand, which required a careful recalculation of the

total power consumption to ensure compatibility with the existing electrical system.

Each servo was changed based on its mechanical performance requirements. After

selection, the electrical characteristics were evaluated in relation to the rover’s standardized

power supply. The operating voltage for all servos was set to 7 volts, delivered by a dedicated

high-current voltage regulator. According to manufacturer data, the estimated stall current values

for each servo in the final configuration are as follows:

• Base (DS3235): ~2.5 A

• Shoulder (DS3235): ~4.2 A

• Elbow (DS3225MG): ~4.2 A

• Wrist (U/D) (DS3225MG): ~2.5 A

• Wrist (L/R) (DS3225MG): ~0.5 A

When all values are summed, the total estimated stall current is approximately 13.9 amperes.

At the operating voltage of 7 volts, this results in a peak power demand of:

𝑃𝑜𝑤𝑒𝑟 = 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = 7𝑉 ∗ 13.9𝐴 = 97.3 𝑊

This value represents a worst-case scenario where all five servos are stalled

simultaneously, which is highly unlikely during normal operation. In typical use, servos draw

only a fraction of their stall current. Based on manufacturer guidelines and real-world conditions,

the robotic arm is expected to operate between 30 to 50 percent of stall current. Using an average

of 50 percent, the expected current draw becomes:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = 13.9𝐴 ∗ 0.5 = 6.95 𝐴

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 = 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 ∗ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = 7𝑉 ∗ 6.95𝐴 = 48.7 𝑊

 59

This average power consumption fits within the robotic arm's allocated share of the

rover’s overall power budget. It also provides a safety margin to accommodate variations in load

during operation. The wiring, connectors, and voltage regulator selected for this system are rated

above the expected peak current, ensuring both electrical reliability and thermal safety.

The updated power budget also confirms that the final servo configuration is not only

mechanically capable but also electrically viable. With this validation complete, the arm was

able to be mechanically assembled and integrated onto the arm for further testing.

3.2.4 Robotic Arm CAD Design

After confirming the revised servo configuration met both mechanical and electrical

requirements, the project moved into the physical assembly stage. When developing the initial

concept for the robotic arm, multiple CAD revisions were made throughout the design process to

enhance mechanical stability and accommodate the functional requirements of the cleaning

system. Early joint layouts and arm dimensions were based on preliminary torque calculations

and assumptions, but once the parts were 3D printed and assembled, significant flex became

apparent, especially around the bicep and elbow joints.

During initial physical testing, the arm exhibited noticeable wobbling and instability,

particularly when fully extended or lifting the brush (Fig. 28). This behavior compromised the

precision of movement and prompted a close evaluation of the mechanical design. It was

determined that the source of the issue stemmed not only from insufficient torque in the original

servos but also from the structural layout of the elbow joint.

The elbow was initially constructed using a single shear mounting configuration, where

the pivot bolt passed through only one side of the joint bracket. This simplified assembly but

concentrated stress on a single plane, which allowed for excessive rotational play. Under load,

this created a mechanical weak point that reduced accuracy and raised concerns about long-term

fatigue.

 60

Figure 39. Robotic Arm single-sheer joint

To address this issue, the elbow was redesigned using a double shear mounting

configuration, where the pivot pin is sandwiched between two opposing plates (Fig. 29). This

evenly distributes the applied load across both sides of the joint, dramatically improving

structural stability and reducing flex. Additional CAD modifications included reinforcing the

forearm with another double shear bracket and adding an outer plate between the shoulder and

elbow segments to stiffen the arm as it moves.

Figure 40. Revised Robotic Arm

These structural changes directly informed the decision to revise the servo specifications.

The observed flex underload revealed that the originally selected servos did not provide

sufficient holding torque. To resolve this, the shoulder and elbow servos were upgraded to

DS3235 and DS3225MG models, which offered significantly higher torque output. With the

stronger servos and revised mechanical joints, the arm’s performance and stability improved

substantially. Initial tests from programing the sequences confirmed that the reinforced design

minimized structural wobble and maintained accuracy through the entire range of motion.

 61

3.2.5 Brush Cleaning Mechanism CAD Design

After completing the arm revisions, focus was shifted to finalizing the design for the cleaning

mechanism. The goal of this specific subsystem was to simulate removing Martian regolith from

solar panels using a lightweight yet efficient duel rotating brush assembly.

 All components for the cleaning mechanism were modeled in Fusion 360, including the

structural housing and custom gear train. During the proposal phase, the option of sourcing

custom-made brush assemblies from commercial vendors to meet the specific needs of this

application were considered. However, due to the high cost of custom fabrication and low

production volume, this option was ultimately deemed impractical within the project’s budget.

As a cost-effective alternative, nylon-Teflon hybrid brushes were selected for their ability to

generate a static charge during rotation, which enhances their effectiveness in lifting fine

particulate matter such as Martian dust simulant. These brushes, commonly found in robotic

vacuum systems (Fig. 41), were adapted to fit the arm using 3D-printed holders designed in

Fusion 360.

Figure 41. ECOMAID Brush Compatible for iRobot Roomba

To rotate each brush, N20 micro gear motors were chosen due to their compact size, low

weight, and adequate torque output. Because the motor and brush shafts are oriented

perpendicularly, a direct-drive configuration was not possible within the constrained form factor

of the wrist assembly. To address this, a compact bevel gear system was designed in Fusion 360

to transfer motion from the motor shaft to the brush.

Each gear was designed to snap-fit onto the end of the brush shaft, eliminating the need

for glue, fasteners, or brush modification. On the motor side, the mating bevel gear is friction-fit

 62

to the N20 motor shaft, providing secure torque transfer without requiring permanent alterations.

This allowed for fast assembly, simplified maintenance, and brush replacement if needed.

Figure 42. Bevel Gear Mechanism CAD Model

A servo-controlled tilt mechanism was also integrated at the wrist, enabling the entire

brush assembly to pitch forward and backward to conform to varying panel angles during

cleaning. This articulation ensured even contact pressure across the brush path and helped

compensate for terrain or rover body tilt.

Figure 43. Wrist Rotation Mechanism CAD Model

The final brush module combined the rotating brush, friction- and snap-fit bevel gear

system, N20 gear motor, and tilt servo, all mounted to a PETG-printed housing. Since both the

robotic arm and brush mechanism were finalized and validated, they were ready to be fully

integrated onto the rover chassis during final assembly and wiring.

3.2.6 Arm & Electrical Integration

Once the mechanical structure of the robotic arm and brush mechanism were finalized, the next

stage involved integrating the assembly into the rover and completing the electrical wiring. The

 63

arm was mounted onto a 3D printed plate on the rover’s chassis using M4 screws and washers. A

4-inch lazy Susan bearing (Fig. 44) was installed beneath the base servo to reduce strain on the

servo shaft while allowing smooth rotational movement.

Figure 44. 4-inch Lazy Susan

Initially, the servos were powered directly through the Maestro servo controller, but this

configuration quickly proved inadequate. The wiring on the Maestro was not rated to handle the

combined current load of all five high-torque servos, which caused power inconsistencies and

unreliable operation. To resolve this, the servo power lines were rerouted to a dedicated power

rail connected to a buck converter that steps down 12V to 7V and can handle up to 20 amps of

continuous current (Fig. 45). This external power rail ensured stable and sufficient power

delivery to each servo.

Figure 45. DC-DC Stepdown Regulator 6-40V into 1.2-36V 20A out

Each servo’s control signal line was still connected to the Maestro controller, occupying

channels 0 through 4 in the following order: base, shoulder, elbow, wrist (up/down), and wrist

 64

(tilt). However, because the servos were no longer powered through the Maestro itself, shared

ground was necessary to ensure signal integrity. A ground wire was added between the Maestro's

power ground and the new external 7V power rail, allowing both systems to share a common

reference. Once this ground connection was established, all servos began responding reliably to

signal commands. The cleaning brush N20 micro gear motors were electrically wired in parallel

to simplify routing and ensure synchronized rotation. These motors were powered independently

of the servos and were connected to a dedicated VNH5019 motor driver (Fig 46).

Figure 46. Maestro & VNH5019 Wiring

All wiring was organized using zip ties to secure loose lines and prevent interference with

the arm's moving components. Careful attention was paid to routing near joints and along the

chassis to avoid pinch points. While no protective sleeve was used, the clean routing and

physical constraints ensured that cables remained secure during full articulation.

Figure 47. Arm & Brush Fully Assembled

 65

With the wiring and mounting complete, the arm system was powered on and underwent

control validation. Each servo responded correctly through the Maestro interface, and the N20

motors operated reliably under VNH5019 control. This marked the successful completion of

mechanical and electrical integration for the Astraeus robotic arm system.

3.2.7 Servo Programing with Maestro Control Center

With servo power and signal wiring complete, servo control and motion sequencing were

implemented using the Pololu Maestro Control Center. This Windows-based application

communicates directly with the 12-channel Micro Maestro over USB and provides a graphical

interface for configuration, manual control, and embedded scripting to enable autonomous

operation of the robotic arm. Each joint of the robotic arm was assigned to a dedicated Maestro

channel as follows:

Channel 0: Base rotation

Channel 1: Shoulder

Channel 2: Elbow

Channel 3: Wrist (up/down)

Channel 4: Wrist (left/right tilt)

The Status tab within the Maestro software was initially used to manually actuate each

servo using on-screen sliders. This facilitated real-time validation of mechanical range,

identification of center positions, and refinement of joint limits. In the Channel Settings tab, each

servo was configured with a minimum pulse width of 3968, a maximum of 8000, and a neutral

center of 6000 microseconds. Channel-specific speed and acceleration values were assigned

based on the mechanical load of each joint. For instance, the shoulder joint, which supports the

heaviest load, was assigned lower speed and acceleration values to reduce mechanical stress

during motion.

To automate movement, the Sequence tab was used to construct motion routines from a

series of servo position frames with defined durations. Each sequence comprises named frames

that store exact servo positions and timing in milliseconds, allowing repeatable and smooth

transitions. Key sequences developed for Astraeus include:

 66

• Sequence 0: Resets the robotic arm to a stowed position for startup and shutdown

procedures.

• Sequence 1: Performs a full brushing routine, including elbow extension, coordinated

wrist adjustment, and sweeping motions.

• Sequence 1.1: Extends the basic brushing routine with additional directional shifts,

allowing multi-pass coverage across a solar panel surface.

Each frame within a sequence is defined by target values for servo positions, speed, and

acceleration. For example, the frame SweepDownL within Sequence 1 activates a combination

of base rotation, elbow extension, and wrist articulation to simulate a downward brushing motion

on the left side of the panel. Frames like Raise for Clearance provide lift motions to avoid

collisions between brushing passes.

Once sequences were validated through live testing, they were exported to the Script tab

using Pololu’s stack-based scripting language. In the script, each frame was converted into a

reusable subroutine (e.g., frame_0..11, frame_3_4), and high-level sequence logic was

constructed using custom subroutines such as Sequence_0, Sequence_1, and Sequence_11.

Script commands such as servo and delay control motion execution and timing. A key

architectural advantage of this approach is that the complete motion logic is stored onboard the

Maestro controller. The Raspberry Pi control system can initiate an entire sequence using a

single serial command, significantly reducing software overhead and improving execution

reliability during autonomous operation. For reference, the full annotated Maestro configuration

file is included in Appendix [G], detailing all servo settings, sequence definitions, and embedded

scripts used in the Astraeus robotic arm.

3.3 Rocker-Bogie Contributions

This section marks the beginning of Pedro’s contributions to the Astraeus rover project.

 67

3.3.1 Rocker-Bogie Design

The rocker-bogie suspension system was fully designed from scratch in Fusion 360, including all

structural joints, brackets, and wheel components. Every part of this subsystem was created to

strict dimensional tolerances to support reliable movement, modular assembly, and real-world

fabrication using PVC tubing and 3D-printed brackets.

The design process began with the creation of a single wheel, which was fully modeled

with a ribbed exterior for terrain grip and a custom internal hub to match the motor shaft. Once

finalized, this wheel was duplicated and mirrored across the chassis to form the remaining five

wheels. Similarly, the entire rocker and bogie geometry was first designed on one side of the

rover, then mirrored to create the opposite side. This approach ensured symmetry while reducing

repetitive CAD work and limiting dimensional mismatch.

Three primary rocker joints were designed:

• The chassis-to-rocker joint, which allows each rocker arm to pivot relative to the main

frame.

• The rocker-to-bogie joint, enabling the bogie segment to rotate independently and allow

rear wheel articulation.

• The sway bar interface joint, connecting the rocker arms to the central differential bar

and allowing balanced terrain compensation between both sides.

Figure 48. Astraeus Wheel

 68

These joints were modeled individually and designed to accept standard PVC tubing, which

serves as the load-bearing link between segments. Each joint was developed to ensure tight press

fits or proper mounting holes, depending on the connection type.

At the end of each rocker arm, a modular three-part assembly was created to support the

motor and wheel. This included:

• The motor bracket, which secured the drive motor directly to the wheel mount with

appropriate offsets and flange supports.

• The L-bracket, which linked the motor bracket to the end of the rocker arm while

maintaining correct alignment.

• The end joint, which completed the connection between the rocker and bogie structure,

formed the transition to the next wheel support.

Figure 49. Rocker-Bogie Assembly (Right)

These components were designed to interlock and remain interchangeable. This modularity

was especially important during physical testing, as it allowed damaged or experimental parts to

be swapped without redesigning the entire system.

The most technically challenging part of the design involved angled tube connections

between the rocker and bogie arms. These parts needed to be connected at both outward and

downward angles, which cannot be accomplished with basic extrusions. To resolve this, a multi-

step modeling approach was used:

• A construction line was created between the start and end points of each angled

connection.

• A sweep extrusion was performed along that line to form the connecting pipe.

• Each end was trimmed flat using a 90-degree cut, ensuring proper mounting faces.

 69

• Because the angled cut created elliptical ends, new planes were placed at each face, and a

1-inch diameter circle was redrawn and extruded to restore perfect circular geometry.

This method was repeated for each connecting tube, ensuring all joints maintained structural

integrity and geometric precision.

The sway bar was also modeled from scratch and connects both rocker arms through a

differential linkage. It was designed to rotate passively, allowing the rover to adjust to uneven

terrain while keeping the main chassis relatively level. The sway bar terminates in custom

mounting heads that interface with the rocker joints on each side.

Every structural segment of the rocker-bogie system was matched to standard PVC tube sizes for

easy fabrication. The CAD models ensured each piece aligned correctly with physical cut lengths

and motor dimensions.

This section of the building was critical to both the rover’s functionality and overall

presentation. Any dimensional inaccuracy would compromise weight distribution, cause

instability, or interfere with motor alignment. The success of this design directly impacted on the

rover’s ability to operate effectively and withstand real-world conditions.

Figure 50. Full Rocker Boggie Assembly

 70

3.4 Software Development

This section outlines Pedro’s contributions to the software development of the Astraeus rover.

The software system was engineered to enable both manual and autonomous operation, with

integrated sensor feedback, precise motor control, and dynamic task execution. Key

functionalities include real-time web-based interaction, modular control over subsystem

behaviors, and coordination with external components such as vision modules and actuator

controllers. Every part of the codebase, from low-level GPIO handling to high-level user

interface logic, was developed in-house with a focus on robustness, clarity, and future

expandability. The resulting architecture allows for seamless transitions between control modes,

efficient sensor data processing, and simplified debugging across individual modules.

3.4.1 Software Architecture Overview

The software system developed for the Astraeus rover was designed with modularity and layered

control in mind. Each component of the software is encapsulated in its own module, allowing for

individual development, testing, and debugging without compromising the integrity of the

overall system. The architecture is split into three primary layers: the control logic layer, the

hardware interface layer, and the user interface layer.

At the core of the system lies the control logic, which governs the flow of commands and

decision-making during both manual and autonomous operation. The entry point for this logic is

handled by start_all.py, which is responsible for launching concurrent processes, specifically the

main control loop (main.py) and the Flask-based web server (app.py). These processes

communicate through shared buffer modules (such as command_center.py), ensuring real-time

responsiveness across both user and sensor-driven events.

Manual and autonomous modes are managed through separate but coordinated pathways.

Manual commands originate from the web interface and are transmitted via HTTP POST

requests to app.py. These are then stored in memory and continuously polled by the control loop

in main.py, which interprets and executes them accordingly using the movement functions

defined in motors.py.

Autonomous functionality is implemented as a modular set of routines inside

autonomy.py. These routines operate in stages, each representing a distinct autonomous

behavior, such as tag following, alignment, cleaning, or repositioning. Transitions between

 71

stages are handled through internal logic based on visual input, sensor feedback, or timed

sequences. The control loop evaluates the current mode of operation and delegates control to

either the autonomous behavior set or the manual command interpreter.

Hardware interfacing is abstracted into independent modules. Motor control is handled

through motors.py, which provides clean, reusable functions for directional movement, speed

control, and braking. Sensor input is managed by sharp_sensor.py, which converts analog

distance data into usable values using the ADS1115 ADC over I2C. External systems such as the

Pololu Maestro are triggered through maestro_module.py, enabling the activation of cleaning

routines or other subassemblies without interfering with the rover’s primary control flow.

The user interface layer is powered by a Flask server defined in app.py. This server

renders several HTML pages (home.html, manual.html, mode.html, etc.) and provides endpoints

for sending commands, adjusting speed, and retrieving system logs. Interaction is supported by

JavaScript, with joystick.js translating user input from a virtual joystick into movement

commands. These commands are sent to the backend and processed in near real time.

A local SQLite database serves as the event logging system. The logger.py module writes

time-stamped logs categorized by level (INFO, WARNING, ALERT), and the dashboard

displays them through dynamically rendered templates like index.html and log_table.html. This

logging system operates independently of the main control flow, ensuring that diagnostics and

event tracking remain functional even during high-load operations.

The entire codebase is structured to allow new modules or hardware to be added with

minimal disruption. Each functional block is designed to operate independently, with

communication handled through shared memory, modular imports, and clean interface

boundaries. This architecture makes the Astraeus software system not only functional and

reliable, but also maintainable and scalable for future development.

3.4.2 Main Execution and Control Logic

The core runtime of the Astraeus rover is governed by two primary scripts: start_all.py and

main.py. These files coordinate how the system boots, how control is shared between manual

and autonomous modes, and how commands are interpreted and executed in real-time.

 72

start_all.py – System Bootstrapper

The start_all.py script serves as the system’s bootstrapper. It uses Python’s multiprocessing

module to simultaneously launch two independent processes: the Flask-based user interface and

the rover’s main control loop.

Figure 51. Shared dictionary setup in start_all.py for inter-process communication

This shared dictionary is initialized once and passed to both processes. It holds the

current drive command, speed setting, operation mode (manual or autonomous), and any selected

task. This architecture ensures synchronized communication between the web interface (app.py)

and the main control logic (main.py), even though they run independently.

The processes are launched as follows:

Figure 52. Dual-process launch for Flask and control loop in start_all.py

This structure ensures that both the control system and the web server are live from the

moment the program starts. If either process terminates, the other will continue to run unless

explicitly terminated.

 73

main.py – Control Decision Loop

The main.py file contains the central control loop that continuously checks the shared state to

determine the rover’s operational mode and execute corresponding logic. The entry point is the

main_loop() function.

Figure 53. Main control loop in main.py handling mode-based task delegation

Every 200 milliseconds, the loop polls the current mode (manual or autonomous) and

performs the appropriate action. This mode is set by the Flask interface and accessed through

shared memory via command_center.py.

Manual Mode Handling

In manual mode, the handle manual() function reads the current command and speed from the

shared dictionary:

Figure 54. Manual command and speed retrieval from shared memory in main.py

Depending on the command received—such as movement instructions (forward, left,

stop), alignment requests (align1, align2), or cleaning sequences (seq1, seq2), the appropriate

 74

control routine is triggered. Once executed, the command is cleared to prevent it from being

repeated.

Autonomous Mode Handling

In autonomous mode, the handle_autonomy() function checks whether the system is already

running a task. If idle and a new task is detected in the shared memory, it is passed into the

run_autonomy() function.

Figure 55. Task check and autonomous execution trigger in main.py

This structure ensures that only one task is executed at a time, and that manual overrides

are ignored while autonomous functions are active.

Shared Memory and Command Routing

The command_center.py module abstracts access to the shared dictionary, allowing all scripts to

interact with shared state in a clean and controlled manner.

Figure 56. Command access functions in command_center.py using shared memory

This modular setup makes it easy to route and isolate data between components, whether

it’s setting a drive command from the web interface or reading a selected cleaning task from

within the control loop.

 75

Coordination and Isolation

The multiprocessing architecture ensures fault isolation between the interface and control logic.

The Flask server can be restarted independently of the control system, and commands are

buffered in shared memory to prevent missed instructions. This separation also simplifies

debugging, as issues in one process do not halt the entire system.

This dual-process structure forms the foundation of the Astraeus software system. It

ensures responsiveness to user input, real-time execution of control routines, and a clean

separation between logic and interface, all while remaining lightweight and flexible enough to

run on a Raspberry Pi 3.

3.4.3 Manual Control System

The manual control system provides a real-time interface for users to directly operate the

Astraeus rover using a web dashboard. This system was built with one key design principle in

mind: full containment. No external hosting services, scripts, or cloud-based dependencies are

required to operate the system. Everything is served locally from the onboard Flask server,

including the HTML frontend, CSS styling, JavaScript logic, and virtual joystick controls. This

architecture ensures the rover can function reliably even in isolated environments without

internet access.

Flask Server Architecture

The Flask server defined in app.py is responsible for serving the manual control interface and

handling incoming HTTP POST requests. It exposes several key endpoints that allow the user to

send movement commands, adjust motor speed, switch modes, and access other control

functions.

One of the core endpoints is /manual/command, which receives movement instructions

from the web interface and places them into shared memory:

 76

Figure 57. Route in app.py to receive manual movement commands.

This command is then picked up by the main loop in main.py when the system is in

manual mode, allowing real-time execution of user input. The use of shared memory ensures that

command state remains synchronized between the Flask process and the control loop process.

Speed Adjustment Endpoint

In addition to directional movement, the operator can adjust motor speed using a slider interface.

This input is handled via the /manual/speed route:

Figure 58. Speed update route in app.py for manual mode.

This allows the user to tailor responsiveness of the rover to match surface conditions or

task sensitivity. The updated speed value is stored in shared memory and applied to all future

movement commands until it is changed again.

Local Hosting of Joystick Library

A major goal in the development of this system was to ensure full local functionality, even

without an internet connection. As part of that goal, the joystick interface was implemented using

 77

the open-source nipplejs library, but instead of loading it from an external CDN, the full library

was downloaded and stored locally in the project’s static directory. This guarantees that the

virtual joystick will load and function correctly regardless of internet access.

The script is included in the HTML as follows:

Figure 59. Local inclusion of nipplejs in the HTML interface.

This ensures that the joystick logic is served directly from the Raspberry Pi running the

Flask server, further reinforcing the autonomy and self-reliance of the rover system.

Joystick Input Handling

The virtual joystick is defined and configured in joystick.js, which continuously monitors input

direction and magnitude. It calculates a command string such as "forward", "backward", "left",

or "right" and sends it to the backend through a fetch request. This system ensures smooth

transitions and responsiveness, rather than relying on discrete button presses.

Figure 60. JavaScript function sending movement commands to Flask.

While the joystick is being held, the script continuously sends commands to the backend every

few milliseconds. When the joystick is released, a "stop" command is sent, halting movement

immediately.

This behavior ensures responsive manual control while also allowing the user to make

precise adjustments. Any delay or packet loss is minimized by the fact that all communication

occurs on the local network and within a single device in most use cases.

 78

Mode Switching

Mode control is handled via another route, /set_mode, which allows the operator to toggle

between manual and autonomous modes. The selected mode is written to shared memory and

governs how the control loop in main.py behaves.

Figure 61. Mode selection route in app.py.

When manual mode is selected, the main loop immediately begins polling for joystick

commands and speed updates, while pausing any autonomous tasks or tag-following logic.

Real-Time Responsiveness and Loop Timing

Due to the lightweight design and use of local memory, the time between joystick input

and motor movement is minimal. The control loop runs on a 200 ms delay, and the joystick

sends continuous updates while active. This enables smooth, responsive handling, even during

fine control tasks such as alignment or obstacle navigation in manual mode.

This architecture ensures that the manual control system is not only functional and

responsive but also completely self-sufficient. All frontend and backend elements are hosted

internally, making the system portable, reliable, and robust in offline or field environments.

3.4.4 Autonomous Navigation and Tag Alignment

The autonomous behavior of the Astraeus rover is coordinated through two core modules:

autonomy.py and visual_module.py. These scripts work together to manage visual tag tracking,

alignment, and stage transitions within a cleaning sequence. Tags are used solely for tracking and

alignment, not for task identification. The system executes one task at a time and uses visual

 79

feedback to precisely position itself before engaging cleaning actions or repositioning

maneuvers.

Task Detection and Execution

Autonomous mode is activated by selecting a task from the web interface and switching the

mode to "autonomous". When this happens, main.py checks the shared memory for a queued

task and launches the control flow by calling run_autonomy(task) from autonomy.py.

Figure 62. main.py triggers run_autonomy() when a task is detected.

Each task represents a complete sequence such as aligning to a panel, cleaning it, and

repositioning. Tag IDs (e.g., Tag 2 for Panel 1, Tag 3 for Panel 2) are associated with alignment

only, not for identifying which task to perform.

AprilTag Detection Using HuskyLens

The rover uses a HuskyLens camera for detecting AprilTags via I2C. The visual_module.py

module interfaces with the HuskyLens using the HuskyLensLibrary. The function

get_tag_data(tag_id) requests all visible tags, scans for a specific ID, and returns its position if

found.

 80

Figure 63. Detection and buffering of April Tag data in visual_module.py.

This positional data is stored in a tag-specific rolling buffer and smoothed before being

used to determine adjustments.

Tag Data Smoothing

To ensure steady and jitter-free feedback, visual_module.py uses a simple averaging function

over the last five readings for each tag. This minimizes unwanted corrections from noisy data.

To calculate the smoothed value of each coordinate (e.g., 𝑥, y, width, or height), a simple

moving average is applied over the last 𝑛 readings. The formula is defined as:

�̅� =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

Where:

• �̅� is the smoothed (averaged) value,

• 𝑥𝑖 is the 𝑖𝑡ℎ recorded value,

• 𝑛 is the total number of recent readings (in this case, 𝑛 = 5).

 81

Figure 64. Smoothed average output of tag data to stabilize alignment.

Approaching the Solar Panel – drive_until_tag_detected()

The autonomous navigation process begins with the rover executing the

drive_until_tag_detected() function. The primary objective of this function is to bring the rover

within a usable alignment range of a solar panel, where AprilTag detection is stable, and

proximity is close enough to begin fine adjustments. This function acts as the entry point to the

full autonomous task pipeline.

At the start of the routine, the rover rotates slowly in place until it detects Tag 1, which

serves as the approach marker for solar panel tracking. Once Tag 1 is found and its width

exceeds a small threshold (indicating it's visible but still distant), the rover begins driving

forward. As it moves, it continually checks for the presence of the target panel tag (either Tag 2

or Tag 3 depending on the selected task).

The rover prioritizes transitioning from Tag 1 to the actual panel tag as soon as it is seen.

Once the target panel tag becomes visible and passes a defined minimum width (indicating the

rover is within reasonable tracking range), forward motion stops and alignment can begin.

This process includes several built-in fail-safes:

• If the target tag is not seen within 12 seconds, the rover stops and logs a timeout event.

• If no tag is visible for 6 seconds during approach, the rover exits and returns False.

• If the rover’s IR sensors report that it is already too close to the panel, the function will

not proceed further to avoid collision.

 82

The loop continuously evaluates these visual and distance conditions to determine if it's

appropriate to transition into alignment.

This function plays a critical role in the autonomy logic:

• It serves as a search and approach phase, ensuring the panel tag is located from a wide

angle.

• It guarantees the rover is in an optimal starting position for alignment, facing the tag

head-on and within both visual and IR range.

Once drive_until_tag_detected() exits successfully, it returns True, signaling that the rover is

now ready for precise alignment using the alignment_sequence() function. The full

implementation of this function can be found in Appendix H.3.

Alignment Process – alignment_sequence(tag_id)

Once the rover is in close proximity to the solar panel, the alignment_sequence(tag_id) function

is called to perform precise orientation and positioning. This function is responsible for centering

the rover directly in front of the panel using both visual and IR sensor feedback. The alignment

logic operates in a continuous loop, reading smoothed AprilTag data from the camera (including

the tag’s x-position and width), along with distance values from both the left and right IR

sensors. These inputs are analyzed together to determine if the rover is centered horizontally,

close enough to the panel, or needs to back up and retry.

The alignment strategy is based on a staged controller. If the tag is visible but offset from

the horizontal center of the frame (162 pixels), the rover turns in place using asymmetric motor

speeds to bring it back on course. When the tag is centered and the rover is not yet too close, it

slowly advances forward. As the rover gets closer, the tag width increases, and if it exceeds a set

threshold, or if the IR sensors indicate the rover is less than ~17 cm away—the system will

reverse slightly and retry the alignment. The alignment is only considered successful when the

rover holds the correct position (tag centered, distance matched, and tag stable) for at least two

continuous seconds.

To protect against failure, the routine allows up to three alignment attempts. If the tag

disappears or the rover is misaligned repeatedly, it will back out and try again. After three failed

attempts, the function exits and logs a failure condition. On success, the rover stops all

 83

movement and returns control to the main task sequence, now correctly positioned to begin

cleaning.

This alignment stage is essential to ensure that the cleaning hardware can operate

reliably. Without accurate alignment, the brush or arm mechanisms may miss the panel entirely

or apply uneven pressure. By combining real-time camera feedback with distance sensing and

logic for retries, alignment_sequence() ensures that the rover only proceeds when it's in a

confirmed optimal position. The full implementation of this function can be found in Appendix

H.3.

Cleaning and Return-to-Home Behavior

After a successful alignment, the rover transitions to the cleaning phase. At this point, it is

correctly positioned in front of the solar panel, and the autonomous logic calls a specific cleaning

sequence using trigger_sequence() and run_cleaner(). These functions interact with the Maestro

servo controller via maestro_module.py, sending predefined commands that initiate motion of

the cleaning mechanism—typically a brush or arm. The sequence includes a brief delay, then

activates the cleaning motor at a set speed for a fixed duration (40 seconds in the current

configuration). Once complete, the system stops the cleaning motor and proceeds to the next

stage.

After cleaning, the rover must reposition itself. For tasks involving only one panel (such

as "panel1" or "panel2"), the rover calls the return_home() function. This function initiates a

180-degree turn using timed motor commands, then begins searching for Tag 4, which represents

the home base. Once Tag 4 is detected, the rover switches to the follow_tag(tag_id=4) routine to

track and approach the tag. This function uses real-time tag data to dynamically adjust motor

speeds, keeping the rover aligned with the tag's center while driving forward.

The tag-following continues until the tag width exceeds a predefined threshold, indicating

that the rover is close enough to stop. Once within range, the rover stops all movement, ending

the autonomous task.

This structured sequence, cleaning followed by return-to-home, ensures the rover resets to a

known state after each operation. It also improves usability by positioning the rover in an

accessible location for recharge, maintenance, or manual control. The logic also avoids dead

 84

ends by using tag-based homing instead of hardcoded paths, making the return phase more

robust and environment-aware.

The implementation of these post-alignment behaviors can be found in Appendix H.3.

Figure 65. Task sequence for "panel1" in autonomy.py, showing tag detection and alignment

steps, with fallback to manual mode if either stage fails.

This modular design allows each stage to be tested independently and updated without affecting

the others.

3.4.5 Motor and Movement Control

The movement system of the Astraeus rover is built around a simple but effective abstraction of

PWM-based motor control. Each of the drive motors is wired to a Pololu VNH5019 motor

driver, which receives directional and speed commands via the Raspberry Pi’s GPIO pins. The

motors.py module contains all logic necessary to control these motors, starting from individual

motor movement up to coordinated drivetrain commands.

 85

Core Motor Control

At the heart of the system is the _set_single_motor() function. This function accepts a motor

object, its corresponding PWM output device, and a speed value between -100 and 100. Positive

values make the motor spin forward, negative values spin it in reverse, and a value of 0 stops the

motor entirely. The PWM signal is scaled based on the absolute value of the speed input, and the

direction logic is handled through the gpiozero library’s .forward() and .backward() methods.

Figure 66. _set_single_motor() applies a direction and PWM value based on the requested

speed.

This modular structure allows for highly reusable motor control logic. Whether the

command is for a single wheel, both drive motors, or the cleaning motor, they all pass through

this same function.

Manual Mode Movement

In manual mode, movement commands are received from the web interface via joystick input.

These commands are passed to the send_drive_command(cmd, speed) function in motors.py,

which interprets them and calls set_motor_speed(left, right) with appropriate values. The

 86

available string-based commands include “forward,” “backward,” “left,” “right,” as well as

diagonal and curved options like “forward_left” or “backward_right.”

Figure 67. Centralized drive command routing in motors.py for manual input handling.

This abstraction ensures that all manual controls rely on the same low-level speed

functions, keeping motor behavior predictable and easy to debug.

Autonomous Mode Usage

In autonomous mode, send_drive_command() is not used. Instead, functions like

set_motor_speed(left, right) are called directly to achieve precise, frame-by-frame adjustments.

For example, while aligning to a tag, the system calculates the offset between the tag’s position

and the center of the frame and converts that into an adjustment factor. The adjusted speeds are

then passed directly to set_motor_speed():

 87

Figure 68. Fine-grained motor control in autonomous tag tracking.

This approach gives the autonomy system precise control over rover movement, while

still reusing the exact same motor logic as manual mode. It allows for gradual turns, course

corrections, and safe braking behavior, without any need to redefine how motors are controlled.

3.4.6 Sensor Integration and Obstacle Detection

To enable short-range obstacle detection, the Astraeus rover utilizes two Sharp analog infrared

distance sensors, one positioned on the left and the other on the right front edge of the chassis.

These analog signals are read using the ADS1115 16-bit ADC over the I²C bus, with the

integration logic handled entirely in sharp_sensor.py. The system continuously monitors these

sensors to prevent collisions and supports both visual guidance and physical proximity

safeguards during autonomous operation.

The core of the conversion process involves reading the raw voltage from each sensor

and converting that to distance using a calibrated mathematical formula. This formula accounts

for the non-linear response of the Sharp IR sensor and outputs a usable approximation in

centimeters. Voltages below a certain threshold are considered “out of range,” returning infinity

to signal no nearby obstacle.

 88

Figure 69. Voltage-to-distance conversion used to interpret raw Sharp sensor readings.

To stabilize the data and reduce the effect of transient fluctuations, the module employs a

two-tiered smoothing approach. First, each new distance reading is added to a buffer (deque) of

the last 10 values, from which a running average is computed. Then, this average is passed

through an exponential moving average (EMA) filter, which gives more weight to recent

readings while still retaining the influence of past values. The result is a smoothed, real-time

distance output that updates predictably and responsively.

Figure 70. Exponential moving average (EMA) for smoothing noisy distance data.

These final, filtered readings are made available via the get_smoothed_distances()

function, which is frequently called within autonomy.py, especially during tag alignment

routines. The IR sensors provide a physical check that complements visual detection, ensuring

alignment doesn't proceed unless the rover is at a safe and effective cleaning distance.

For obstacle detection, the function is_obstacle_detected() compares the smoothed IR

values to a defined threshold (typically 40 cm). If either sensor detects an object within that

range, an obstacle is flagged. This mechanism is further expanded in the

emergency_stop_check() function, which acts as a safety supervisor. When an obstacle is

confirmed and no recent cooldown is active, this function stops the motors, logs a warning, and

waits five seconds before reevaluating the environment. If the obstacle is still present after 20

seconds, the system logs an alert and remains halted.

 89

Figure 71. Emergency stop routine triggered when a nearby object is detected.

These safeguards are particularly important during autonomous routines like

alignment_sequence(), where the rover moves closer to a solar panel using visual cues. If visual

alignment appears successful but the IR sensors disagree, the system will prioritize safety and

back off to avoid impact. This layered logic makes the rover more resilient in unpredictable

environments and enhances its ability to operate autonomously without requiring constant

oversight.

The complete implementation of this sensor integration and safety logic can be found in

Appendix H.5.

3.4.7 External Subsystem Control

The Astraeus rover communicates with an external Pololu Maestro servo controller to operate its

mechanical subsystems, such as activating a cleaning brush or lifting mechanism. To simplify

this communication, a custom Python module named maestro_module.py was created. This

 90

module serves as a lightweight interface between the Raspberry Pi and the Maestro via USB

serial.

At the core of the module is the trigger_sequence(subroutine) function, which sends a

predefined 4-byte serial command following Pololu’s official Serial Script Protocol. Each

subroutine corresponds to a scripted behavior already programmed into the Maestro using its

configuration software.

Figure 72. Function to trigger subroutine execution on the Pololu Maestro via serial command.

This modular setup allows autonomous routines, such as panel cleaning, to call external

hardware sequences simply by invoking trigger_sequence() with the appropriate subroutine

number. This keeps the Python-side logic clean and avoids embedding low-level serial

commands throughout the main control flow. The complete implementation of this module can

be found in Appendix H.7.

3.4.8 Event Logging and Dashboard Interface

The Astraeus rover features a fully self-contained web dashboard, hosted locally on the

Raspberry Pi using Flask. This dashboard was designed as both a control and monitoring

interface, offering real-time feedback and full interaction without needing internet access. All

necessary files, including HTML, CSS, JavaScript, and logging logic, are stored and served from

the Raspberry Pi itself. This design ensures the interface remains functional in remote locations

and field deployments.

Upon visiting the dashboard, users first land on the Home tab, which serves as the central

landing point. From this screen, users are presented with system status information and

navigational options. They can choose to enter either the Mode Selection tab or the Data Logging

tab, depending on whether they wish to operate the rover or review system activity.

 91

Figure 73. Home Tab here to show the starting point of the UI.

Navigating to the Mode Selection tab, users can switch between manual and autonomous

operation. In manual mode, the interface provides a full control panel featuring a locally hosted

virtual joystick powered by the nipplejs library. By downloading and storing this library locally,

the entire UI remains fully offline and self-reliant. The joystick input is sent to the Flask backend

and used to issue real-time drive commands to the motors. This design ensures tight

responsiveness and eliminates external dependencies.

 92

Figure 74. Select Operation Mode screen.

Figure 75. Manual Mode Control Interface with Joystick after this paragraph.

 93

When users select Autonomous mode, they are prompted to choose from three available

task options: clean Panel 1, clean Panel 2, or clean both panels sequentially. Once a selection is

made, the rover executes the appropriate sequence autonomously using a combination of vision,

sensors, and mechanical subsystems. The interface also indicates the active task and tracks

progress, helping the user understand what the system is currently executing.

Figure 76. Autonomy Mode Selection Screen here.

Alternatively, users can access the Data Logging tab, which offers real-time insight into

the rover’s operations. The system logs all notable events, such as tag detection, alignment

status, obstacle warnings, and cleaning activation, into an SQLite database. These logs are

categorized into INFO, WARNING, and ALERT levels and are displayed in an organized table.

Users can filter by severity or view all entries, and the page updates automatically without

requiring a manual refresh.

The logging interface also includes a floating “new messages” notification. If the user is

scrolled up in the log history and new messages are received, this banner appears at the bottom

 94

of the screen to ensure the user is immediately informed of recent system activity. This feature

keeps the operator aware of important updates without disrupting their current view.

Figure 77. Full Log Table View (All Levels)

Figure 78. Warnings Filtered View

 95

Figure 79. Alerts Highlighted in Red

Figure 80. Load Older Log Button, no new messages were available at the time so no “New

Message” Pop up.

On the backend, the logging system is managed by logger.py, which defines modular

functions for logging events from any part of the codebase. These functions—log_info(),

log_warning(), and log_alert(), record entries with timestamps and severity levels into the

SQLite database (log.db). Logging occurs throughout the autonomy pipeline, sensor monitoring,

safety routines, and even manual actions, making it easy to trace what the system did and when.

Altogether, the dashboard and logging interface offer a robust and intuitive way to

interact with the rover. Whether driving manually, launching an autonomous routine, or

reviewing past events, the user is given full transparency and control in one integrated system.

The implementation details of the Flask server and the event logging system can be found in

Appendix H.8.

 96

3.4.9 Safety and Fail-Safe Mechanisms

Safety was a core consideration throughout the development of the Astraeus rover’s software.

Given its autonomous capabilities and interaction with physical hardware, a layered system of

fail-safes was designed to prevent collisions, halt unsafe operations, and recover gracefully from

software or communication faults.

The primary safety mechanism is the obstacle detection and emergency stop system,

implemented through the sharp_sensor.py module. If either of the IR distance sensors detects an

object within a predefined threshold, the emergency_stop_check() function halts all movement,

logs a warning, and enforces a brief cooldown period. If the obstruction persists, the system logs

an alert and remains in a safe, stopped state. This feature ensures that even if a visual tag is being

followed, the rover will never collide with an unexpected object due to poor lighting or

misalignment.

Complementing this are timeout and retry systems scattered across key control modules.

For example, in autonomy.py, if a tag is lost for too long or if alignment fails after three

attempts, the system exits the task early and logs the failure. Similarly, the return-to-home

sequence has built-in tag reacquisition attempts and timeout logic, preventing infinite loops or

stalling behavior in the event of lost visual input.

Another important safeguard is the cooldown timers on critical subsystems, like cleaning

motors. These prevent the hardware from being reactivated too quickly after a cleaning sequence

finishes, protecting both the motors and the battery from overuse or overheating.

Despite these software safeguards, the system also includes a fully independent

hardwired recovery mode via failsafe_manual.py. This standalone script bypasses the web

interface entirely and provides direct terminal-based keyboard control of the rover. Once

launched, it enables full manual driving using WASD-style key input and also provides one-key

access to critical operations such as running cleaning sequences or initiating tag alignment

routines.

 97

Figure 81. Key-mapping dictionary in failsafe_manual.py that defines manual control input

using standard keyboard keys.

Using the terminal-based curses interface, the user receives printed feedback for each

movement, action, or alignment attempt. If a crash occurs in the Flask web UI or if the Pi loses

network connectivity, this script can still be run directly through SSH or a monitor and keyboard

connection. It gives the operator the ability to safely navigate Astraeus out of an unsafe position

or complete critical tasks when the main dashboard becomes unresponsive.

By combining software-based detection, timeout and retry logic, and a fully isolated

manual fallback script, the Astraeus control system is able to operate safely in autonomous mode

while still offering full manual override in emergency conditions. These features ensure that the

system remains responsive, resilient, and recoverable under a wide range of failure scenarios.

The full failsafe control script can be found in Appendix H.11.

3.4.10 Modular Design and Scalability

The software architecture of the Astraeus rover was intentionally designed with modularity as a

core principle, enabling isolated development, flexible debugging, and scalable integration for

future hardware and features. Each major system component, such as motors, sensors, autonomy,

visual tracking, logging, and web control, was separated into its own dedicated Python module.

This allowed for parallel development of each subsystem and ensured that any changes or

upgrades to one component would not interfere with the functionality of others.

For example, motor control logic resides entirely in motors.py, which exposes clear

functions like set_motor_speed() and stop_motors() that can be reused across both manual and

autonomous routines. Similarly, sharp_sensor.py handles all aspects of analog IR input and

smoothing, making it easy to swap in different sensor models or adjust filtering without

 98

modifying core control logic. Vision-based tag detection is abstracted into visual_module.py,

providing a clean interface for retrieving smoothed AprilTag data regardless of the underlying

detection algorithm.

The separation of UI logic into app.py also means that interface changes or feature

additions, like new control buttons or tabs, can be made without affecting any of the movement

or sensor logic. Meanwhile, the event logging system (logger.py) operates independently,

capturing events from anywhere in the codebase without requiring deep integration.

This clean separation of responsibilities makes the codebase highly extensible. If new

hardware components are introduced, such as a GPS module, LIDAR, or additional actuators,

they can be integrated by simply creating a new module or expanding existing ones. Because of

the modular command structure, these additions would be able to hook into main.py or

autonomy.py with minimal risk of breaking existing functionality. Similarly, new autonomy

behaviors or task types can be added as additional functions without requiring a major overhaul

of the control structure.

The design also lends itself well to future software growth. Enhancements such as adding

telemetry logging, ROS integration, or cloud-based dashboards could be implemented as entirely

new modules or services that interact with the existing framework. This forward-thinking

structure ensures that Astraeus is not only reliable in its current state, but also adaptable to future

use cases, competition rules, or field conditions.

Overall, the modular approach has made the codebase easier to manage, easier to test,

and far more scalable, ensuring that Astraeus can continue to evolve without needing to be

rewritten from the ground up.

 99

Chapter 4 Non-Technical

Issues

Non-Technical Issues

4.1 Project Timeline

4.2 Budget

4.3 Health & Safety Considerations

4.4 Ethical Considerations

4.5 Environmental & Sustainability Considerations

4.6 Sustainability Considerations

Summary

In this chapter, we will discuss the project timeline, proposed and actual budget, and the economic

factors associated with the development of Astraeus. We will also address important non-technical

issues such as environmental impact, health and safety concerns, ethical responsibilities, and

sustainability. These considerations are vital to the success and integrity of any engineering

project, and this chapter outlines how they were addressed during the design, construction, and

testing phases of Astraeus.

 100

4.1 Project Timeline

The Development of Astraeus was guided by clearly defined schedules broken into two phases: Proposal

Phase (Spring 2025) and Design Phase (Summer 2025). Each phase was structured to ensure the group

met the weekly objectives through research, development, and testing.

4.1.1 Proposal Phase (Spring 2025)

This phase focused highly on conceptual development of the project, team responsibility and

coordination, and CAD rendering. The spring semester weekly timeline is displayed in Table 14,

Table 14. Spring Timeline

Week Objective

Week 1:

1/6/25 - 1/13/25

- Review syllabus and project expectations

- Determine future meeting schedule

- Draft 2–3 project ideas with flowcharts and descriptions

Week 2:

1/13/25 - 1/20/25

- Discuss project ideas and website layout

- Explore SEAR applications beyond space

- Research semi-autonomous rover capabilities

Week 3:

1/20/25 - 1/27/25

- Finalize project concept

- Assign roles and start organizing requirements

- Begin report draft and project naming

- Contact Dr. Carbone and UCF Exolith Lab

Week 4:

1/27/25 - 2/3/25

- Define mobility, autonomy, and communication constraints

- Revise report to reflect updated project scope

- Research brush system with static charge potential

Week 5:

2/3/25 - 2/10/25

- Review report Chapters 1–4

- Discuss component selection and power budget

- Finalize solar panel for testing

- Transfer documentation to report

Week 6:

2/10/25 - 2/17/25

- Review Chapter 1 introduction and Chapter 2 integration

- Align hardware/software functions with project goals

 101

- Finalize budget draft and project timeline

- Continue website updates

Week 7:

2/17/25 - 2/24/25

- Refine Chapters 3 (budget/timeline) and 4 (future expansions)

- Plan CAD responsibilities for chassis and rocker-bogie

- Contact UCF for Martian soil

- Begin CAD for chassis

Week 8:

2/24/25 - 3/3/25

- Discuss Martian soil acquisition with Dr. Britt

- Confirm testing plan at UCF Exolith Lab

- Resize main frame CAD and refine block diagrams

Week 9:

3/3/25 - 3/10/25

- Confirm contact with Parks Easter (via Dr. Britt)

- Assign design responsibilities

- Continue drafting Chapters 1 & 2

- Refine system flowcharts

Week 10:

3/10/25 - 3/17/25

- Focus on steady progress before spring break

- Continue CAD development (arm, brush, frame)

- Maintain consistent communication during the break

Week 11:

3/17/25 - 3/24/25

- Maintain project momentum during break

- Continue CAD work on main assemblies

- Draft Chapters 3 & 4 of report

- Modify and finalize flowcharts

Week 12:

3/24/25 - 3/31/25

- Register for Lunabotics and confirm volunteer status

- Finalize arm and drive system CAD

- Begin brush mechanism CAD

- Finalize report details and website review

Week 13:

3/31/25 - 4/7/25

- Review revised flowcharts and presentation slides

- Finalize formatting of report and website

- Continue printing chassis components for final assembly

Week 14:

4/07/25 - 4/14/25

- Practice and finalize report presentation

- Assemble printed chassis components

 102

The Corresponding Gantt chart on the next page is for spring displayed in Table 15. The expected design-phase Gantt chart created prior to the

start of implementation is shown in Table 16 and served as a planning reference to guide weekly goals and deliverables following Senior Proposal.

Table 15. Spring Gantt Chart (Proposal Phase)

 103

Table 16. Senior Design (Proposed) Gannt Chart

 104

4.1.2 Design Phase (Summer 2025)

The Summer semester timeline is depicted in Table 17. The design semester focused on finalizing the

software, assembling the finalized hardware, and troubleshooting. Table 18 depicts the timeline

represented as Gantt chart. Following is the contributions table representing each group members’

contribution in Table 19.

Table 17. Spring Timeline

Week Objective

Week 15:

5/06/25 - 5/13/25

- Begin final mechanical assembly

- Review design-phase deliverables

- Review roles and timeline ownership

Week 16:

5/13/25 - 5/20/25

- Finalize mechanical structure

- Power system wiring check

- Start report Chapters 1–2

Week 17:

5/20/25 - 5/27/25

- Begin obstacle avoidance programming

- Verify Pi-to-driver communication

- Continue documentation

Week 18:

5/27/25 - 6/3/25

- Continue obstacle avoidance logic

- Begin integrating AI object detection (HuskyLens)

- Internal wiring validation

Week 19:

6/3/25 - 6/10/25

- Refine object detection setup

- Start path-to-panel logic

- Continue report draft (Ch. 3–4)

Week 20:

6/10/25 - 6/17/25

- Test AI object detection in real time

- Tune path-planning algorithm

- Flowchart and diagram updates

Week 21:

6/17/25 - 6/24/25

- Begin alignment sequence programming

- Start database setup for logging

- Internal navigation test in mock setup

 105

Week 22:

6/24/25 - 7/1/25

- Refine alignment and return-to-base logic

- Field test partial navigation flow

- Update testing procedures

Week 23:

7/1/25 - 7/8/25

- Repair and reinforce left-side rocker

- Rewire rover for modularity with labeled connectors

- Replaced Raspberry Pi and verified drivers

- Order new motor drivers

- Connect and configure Maestro controller

- Finalize navigation/system flowcharts

Week 24:

3/10/25 - 3/17/25

- Complete system test of 5-axis arm

- Confirm readiness for field testing

- Finalize power budget with motor driver specs

- Complete rough drafts of Chapters 1–5

- Refine navigation verification procedures

Week 25:

7/15/25 - 7/22/25

- Begin programming final autonomous logic

- Start compiling results and debug logs

- Continue field testing individual functions

- Refine final report formatting

Week 26:

7/22/25 - 7/25/25

- Finalize presentation

- Rehearse presentation

The weekly progress initially expected during the proposed design-phase timeline were closely

followed with only minor setbacks, ensuring that major milestones such as system integration, field

testing, and report completion were met on time. The Corresponding Gantt chart for the summer is

displayed in Table 18.

 106

Table 18. Spring Gantt Chart

 107

The development of Project Astraeus required coordinated efforts across multiple

technical domains, including mechanical design, electrical integration, and software

development. To ensure efficiency and clear accountability, team responsibilities were divided

based on each member’s strengths and contributions. The table below outlines the specific roles

and tasks completed by each team member throughout the course of the project, as well as tasks

that were completed collaboratively. This distribution highlights the individual contributions that

made the successful integration and functionality of the system possible.

Table 19. Contributions Table

Team Member Responsibility

Mark

Design and implemented all electrical components and circuits

Design CAD for main chassis to house components

Design CAD for 5-axis cleaning arm

3D-print and assemble the main frame and cleaning arm

Finalize mechanical integration and fit-up

Integrate electrical components into mechanical structure

Code 5-axis cleaning arm movement sequences

Pedro

Design CAD for rocker-bogie suspension

3D-print and assemble the components for rocker-bogie

Code main control software and autonomous algorithm

Create the Database and Web User Interface

Integrate into Raspberry Pi, HuskyLens, and sensors

Establish LAN communication for data transfer

Group

Write Report

Refine System components

Trouble-shoot system integrations

Create and Practice Presentation

 108

4.2 Budget

The financial plan for the Astraeus project includes two separate charts: one outlining the projected costs

and another detailing the actual expenses tracked throughout the development cycle. This distinction

provides transparency between the planned budget and the final comprehensive budget.

All purchases are categorized based on whether they were personally funded or provided by

Valencia College, ensuring clear attribution of financial responsibility. Tables 20 and 21 present the

proposed and final comprehensive budgets, respectively, and highlight where adjustments were made due

to component replacements, testing needs, or integration challenges.

Table 20. Proposed Budget

ASTRAEUS Bill of Materials

Line

Item
Part # Name Qty

Price

(USD)
Total Supplier

1 N/A V Slot Aluminum Extrusion 1 $59.99 $59.99
Purchased/Provided by

Valencia College

2 N/A
OVERTURE PETG Filament

1.75mm
4 $15.99 $63.96

Purchased/Provided by

Valencia College

3 N/A HuskyLens AI Camera 1 $59.90 $59.90
Purchased/Provided by

Valencia College

4 LM2596S
DC-DC Voltage Regulator

Power Module
1 $12.49 $12.49

Purchased/Provided by

Valencia College

5 12V30Ah
12V 30Ah Lithium LiFePO4

Battery
1 $62.99 $62.99

Purchased/Provided by

Valencia College

6 N/A
Greartisan DC 12V 10RPM

Gear Motor
6 $14.99 $89.94

Purchased/Provided by

Valencia College

7 VNH5019 Motor Driver Carrier 3 $29.95 $89.85
Purchased/Provided by

Valencia College

8 GP2Y0A21YK0F
Sharp IR Analog Distance

Sensor (10-80cm)
4 $8.59 $34.36

Purchased/Provided by

Valencia College

9 1576
99:1 Metal Gearmotor 25Dx54L

mm HP 6V
2 $28.95 $57.90

Purchased/Provided by

Valencia College

 109

10
ADS1115

16-bit 4 Channel I2C ADC

PGA Converter
1 $15.99 $15.99 Purchased

11 N/A

4 Channels I2C Logic Level

Converter Bi-Directional 3.3V-

5V Shifter

1 $7.49 $7.49 Purchased

12 1352
Mini Maestro 12-Channel Servo

Controller
1 $32.95 $32.95

Purchased/Provided by

Valencia College

13 DS3225MG
25KG Full Metal Gear RC

Servo (2 pack)
1 $28.89 $28.89

Purchased/Provided by

Valencia College

14 DS3218MG
20KG Full Metal Gear RC

Servo
1 $13.59 $13.59

Purchased/Provided by

Valencia College

15 MG996R 55g Metal Gear Servo (4 pack) 1 $16.68 $16.68
Purchased/Provided by

Valencia College

16
RPI3-MODB-

1GB
Raspberry Pi 3B 1 $35.00 $35.00

Purchased/Provided by

Valencia College

18 N/A
4pcs 6mm Flange Coupling

Connector
2 $8.99 $17.98

Purchased/Provided by

Valencia College

19 N/A 1400 Pcs M4 Nuts Washers Kit 1 $21.99 $21.99
Purchased/Provided by

Valencia College

20 N/A
100 Pieces 2020 Series M4 T

Nuts
1 $5.99 $5.99

Purchased/Provided by

Valencia College

21 N/A
600 Pcs M3 Screws

Assortment Kit
1 $8.99 $8.99

Purchased/Provided by

Valencia College

22 N/A
Rod End Bearings 5mm

FemaleThread
1 $8.99 $8.99

Purchased/Provided by

Valencia College

23 B0DN6CY7JN ESP32-Cam (2 Pack) 1 $18.99 $18.99
Purchased/Provided by

Valencia College

24 N/A
M5 x 250mm Fully Threaded

Rod 2Pcs
1 $5.49 $5.49

Purchased/Provided by

Valencia College

Total (USD): $764.90

 110

Table 21. Final Comprehensive Budget

ASTRAEUS Bill of Materials

Line

Item
Part # Name Qty

Price

(USD)
Total Supplier

1 N/A V Slot Aluminum Extrusion 1 $59.99 $59.99
Purchased/Provided by

Valencia College

2 N/A
OVERTURE PETG Filament

1.75mm
8 $15.99 $127.92

Purchased/Provided by

Valencia College

3 N/A HuskyLens AI Camera 1 $59.90 $59.90
Purchased/Provided by

Valencia College

4 B0B825HRB9
WWZMDiB Constant Current

CC CV Buck Converter Module
2 $9.99 $19.98

Purchased/Provided by

Valencia College

5 12V30Ah
12V 30Ah Lithium LiFePO4

Battery
1 $62.99 $62.99

Purchased/Provided by

Valencia College

6 N/A
Greartisan DC 12V 10RPM Gear

Motor
6 $14.99 $89.94

Purchased/Provided by

Valencia College

7 VNH5019 Motor Driver Carrier 3 $29.95 $89.85
Purchased/Provided by

Valencia College

8 GP2Y0A21YK0F
Sharp IR Analog Distance Sensor

(10-80cm)
2 $8.59 $17.18

Purchased/Provided by

Valencia College

9 N20-BT06 75:1 N20 Micro Gear Motor 2 $6.15 $12.30
Purchased/Provided by

Valencia College

10
ADS1115

16-bit 4 Channel I2C ADC PGA

Converter
1 $15.99 $15.99 Purchased by Pedro

11 N/A

4 Channels I2C Logic Level

Converter Bi-Directional 3.3V-

5V Shifter

1 $7.49 $7.49 Purchased by Pedro

12 1352
Mini Maestro 12-Channel Servo

Controller
1 $32.95 $32.95

Purchased/Provided by

Valencia College

13 DS3225MG
25kg Full Metal Gear RC Servo

(2 pack)
2 $28.89 $57.78

Purchased/Provided by

Valencia College

 111

14 DS3245SG 45kg Full Metal Gear RC Servo 2 $31.99 $63.98
Purchased/Provided by

Valencia College

15 MG996R 55g Metal Gear Servo (4 pack) 1 $16.68 $16.68
Purchased/Provided by

Valencia College

16
RPI3-MODB-

1GB
Raspberry Pi 3 Model B 1 $49.79 $49.79

Purchased/Provided by

Valencia College

18 N/A
4pcs 6mm Flange Coupling

Connector
4 $8.99 $35.96

Purchased/Provided by

Valencia College

19 N/A 1400 Pcs M4 Nuts Washers Kit 2 $21.99 $43.98
Purchased/Provided by

Valencia College

20 N/A
100 Pieces 2020 Series M4 T

Nuts
1 $5.99 $5.99

Purchased/Provided by

Valencia College

21 N/A
600 Pcs M3 Screws Assortment

Kit
1 $8.99 $8.99

Purchased/Provided by

Valencia College

22 N/A
Rod End Bearings 5mm

FemaleThread
1 $8.99 $8.99

Purchased/Provided by

Valencia College

23
B0CDLKX842

14 AWG, 2-conductor CCA wire

(Red & Black) 100 ft
1 $20.99 $20.99 Purchase by Mark

24 B0BKGZRM8C
18 AWG, 41-strand, low-voltage

wire 100 ft
1 $25.49 $25.49 Purchased by Mark

25 Frienda-67892 Frienda Servo Extension Cables 2 $8.99 $17.98 Purchased by Mark

26 GUB-6-20

GUBCUB Terminal Block Kit (6

Circuit, Duel-Row, 20A-30A,

200V-450V)

4 $10.49 $41.96 Purchased by Mark

27
282 Pieces Car Fuses Assortment

Kit
1 $13.99 $13.99

28 N/A
M5 x 250mm Fully Threaded

Rod 2Pcs
1 $5.49 $5.49

Purchased/Provided by

Valencia College

Total (USD): $1,014.52

While assembling and testing Astraeus, we encountered an issue with the original motor drivers.

A wiring mistake during early integration caused the onboard MOSFETs to fail, requiring the repurchase

 112

of replacement VNH5019 motor driver units. This unexpected event was the most significant deviation

from the proposed budget. It also highlighted the importance of modular wiring and power isolation in

future designs. The finalized comprehensive budget in Table 6 reflects all components required for a fully

functional rover assuming no further hardware failures occur. If additional components were to fail during

extended testing, the total cost could increase marginally beyond the current estimate.

4.3 Environmental Aspects

We minimized the environmental footprint of the Astraeus project by selecting low-power, energy-

efficient components and using modular, repairable designs to reduce waste. Materials used in the

construction of the rover, such as PETG for 3D-printed parts, are recyclable and were used with minimal

waste through optimized slicing and support reuse.

 All electronic components, including batteries and any damaged parts, were disposed of

following Valencia College’s electronic waste recycling procedures to prevent environmental

contamination [16]. Additionally, the use of a solar panel for demonstration supports the project’s

alignment with sustainable energy systems and environmentally conscious design [17].

4.4 Health and Safety Considerations

We ensured that all electrical components and connections in Astraeus were securely enclosed or routed

through protected cable paths to prevent accidental contact and electrical hazards. Wires were insulated

and labeled, and fuses were used on the power supply lines to safeguard the system from short circuits or

component failure. Each subsystem, including the motor drivers and servo controller, was mounted with

sufficient clearance to prevent arcing and overheating.

To minimize mechanical risk, the rover's moving components, especially the rocker-bogie

suspension, robotic arm, and cleaning brush were evaluated for pinch points and collision hazards. The

robotic arm’s range of motion and torque were analyzed to ensure that no crushing forces exceed

acceptable safety thresholds during operation. All servos used for the arm are programmed to operate

within safe speed and torque limits. The arm uses spring assistance to reduce motor strain and prevent

sudden, high-force movements [18].

The cleaning mechanism, a rotating brush driven by a low-RPM motor, was tested to ensure that

it would not produce hazardous contact force. Based on test observations, the system does not generate

the threshold force of 150 N identified by OSHA and ISO standards as the limit for crush injuries.

Similarly, the brush motor’s output falls below 80 N, which is the injury threshold commonly associated

with class 1 finger injuries such as ring avulsion [19].

 113

To avoid injury during field testing, team members wore gloves, safety glasses, and closed-toe

shoes, particularly when handling Martian regolith simulant or operating the rover on uneven terrain.

Additionally, the rover’s AI vision and obstacle avoidance features help prevent unintended collisions

during autonomous operation. By integrating mechanical safeguards, electrical protection, and

responsible operating procedures, the Astraeus project was carried out with a strong commitment to

health and safety at all stages of design, testing, and demonstration.

4.5 Ethical Aspects

Project Astraeus strictly adheres to the IEEE Code of Ethics throughout the development process by

ensuring that the rover operates reliably, safely, and without posing harm to users, observers, or the

testing environment [20]. We prioritized safety in both hardware design and testing protocols,

implementing safeguards such as modular power wiring, obstacle detection, and low-force mechanisms.

All team members maintained complete transparency in all performance reports, documentation,

and presentations, clearly stating any limitations or challenges encountered during the project. All budget

deviations, timeline adjustments, and hardware design changes were documented honestly, reflecting

realistic expectations based on available resources and field test data.

The team respected intellectual property and credited all external contributions appropriately,

including academic references, vendor support, and faculty guidance. We actively sought, accepted, and

applied honest criticism throughout the proposal, design, and testing phases. Revisions to the arm system,

frame structure, and electrical layout were driven by both advisor input and peer feedback.

Members of the Astraeus team worked collaboratively, treating one another fairly and

professionally. At no point did the design or implementation of Astraeus violate the IEEE ethical

commitment to avoid injury to others or their property. The project was conducted with a shared goal of

promoting responsible engineering that aligns with real-world standards and classroom integrity. See

Appendix G for a full list of specified IEEE ethical clauses followed throughout the project.

4.6 Sustainability Considerations

Sustainability was an important focus during the design and implementation of Astraeus, particularly

regarding energy efficiency, modularity, and responsible component usage. The full system draws

approximately 231.15 watts during peak operation, including the control platform, motors, robotic arm,

and vision sensors. Power is supplied by a 12V 30Ah LiFePO₄ deep-cycle battery rated at 360 watt-hours,

which offers high energy density, long rechargeability, and a lower environmental impact compared to

traditional battery chemistries.

 114

The use of rechargeable batteries significantly reduces electronic waste and environmental

contamination. Components such as the Raspberry Pi 3 Model B, analog IR sensors, and micro gear

motors were selected based on their energy efficiency relative to performance requirements. The robotic

arm was carefully designed using servo motors that provide the necessary torque without drawing excess

current. Combined with modular wiring and distributed fusing, the power system promotes safe, efficient

energy use and simplifies repairs.

All motion and control algorithms were programmed to minimize unnecessary activity. Obstacle

avoidance, solar panel alignment, and cleaning sequences were optimized to reduce energy consumption

during autonomous operation. The brush system activates only when proper alignment has been achieved,

which conserves energy and limits wear on components.

The modular mechanical design of Astraeus supports long-term sustainability. Each major

subsystem, including the drive assembly, robotic arm, vision module, and power wiring, is designed for

individual serviceability. This enables future teams to reuse or replace components without discarding the

entire system. Additionally, the documentation and control structure created for Astraeus can serve as a

foundation for future educational projects, further extending the utility and life span of the system.

 115

Chapter 5 Conclusion

Conclusion

5.1 Summary and Conclusion

5.2 Suggestions for future work

Summary

This chapter provides a summary of the Astraeus project, highlighting the design

objectives, development process, and key testing results. It evaluates the performance

of major subsystems, including the robotic arm and cleaning mechanism, and discusses

how the final prototype met its engineering requirements. The chapter concludes with

observations on project limitations and recommendations for future improvements.

 116

5.1 Summary and Conclusion

The Astraeus prototype was developed to demonstrate the feasibility of a fully autonomous solar

panel cleaning rover capable of supporting long-duration missions in extraterrestrial

environments. Designed around a modular aluminum chassis, Astraeus integrated a rocker-bogie

suspension for terrain navigation, a five-axis robotic arm equipped with a dual-rotation brush for

cleaning, and a vision-based targeting system using the HuskyLens AI camera. Despite using

non-space-grade components, the rover was engineered to simulate real-world functionality

through subsystem integration, preprogrammed motion sequences, and internal data logging.

Throughout its entire development, key engineering considerations were addressed,

including structural adaptability, autonomous task execution, and system safety. Safety was

addressed through passive design strategies, including low-speed actuation and robust

mechanical stops to prevent overextension. In addition, sustainability and ethical engineering

practices guided design decisions to ensure responsible use of materials and energy. The

successful operation of the cleaning mechanism, combined with consistent navigation and

performance logging, confirms Astraeus as a viable proof of concept for future off-world

maintenance platforms. This chapter provides a comprehensive summary of the project’s

outcomes, engineering achievements, and areas for future improvement.

5.1.2 Robotic Arm Performance and Brush Results

The robotic arm met its high-level engineering requirement of operating a variable speed

cleaning brush with sufficient control to effectively remove dust and debris from solar panel

surfaces. The dual-rotation brush was able to maintain a consistent speed throughout testing.

Although the system did not include real-time pressure feedback, the combination of servo speed

tuning and joint positioning allowed for stable brush contact with the panel surface. Under

controlled conditions using measured quantities of Martian regolith simulant, the brush

demonstrated reliable dust agitation and removal. The testing confirmed that cleaning was

consistent at the defined operating speed, fulfilling the requirement to verify performance

through repeatable results.

Figures 48 and 49 present before-and-after comparison of the solar panel surface

following the execution of a single brushing routine using Sequence 1 on both sides of the panel.

In the initial state, a layer of fine particulate dust covered the panel, simulating Martian regolith

 117

accumulation. After performing the full cleaning sequence, the robotic arm successfully agitated

and swept the dust off the panel’s surface, with visible improvements in cleanliness both times.

Figure 82. Panel Section 1 Cleaned

Figure 83. Panel Section 2 Cleaned

Sequence 1.1 was developed as an experimental routine to simulate a zigzag brushing

pattern from the top to the bottom of the solar panel. This pattern was designed to provide

broader coverage through directional shifting after each pass. Although implemented and

included in the Maestro configuration file, it was not used in final testing due to mechanical

limitations. The horizontal orientation of the brush in this sequence proved less effective,

resulting in inconsistent bristle contact and reduced cleaning efficiency during lateral

movements.

This outcome revealed a constraint in the current five-axis arm configuration: the

inability to rotate the brush along its own axis. Without axial rotation, the brush cannot maintain

perpendicular contact when changing sweep direction. For future improvements, a sixth axis of

 118

motion is recommended to allow the brush to rotate 90 degrees, enabling it to align properly with

the panel surface throughout both vertical and horizontal passes. This would improve contact

pressure, coverage consistency, and overall cleaning performance. Even though the rover has no

dynamic alignment or real-time correction, the robotic arm’s brushing sequence proved capable

of effectively agitating and displacing dust in a single pass. Dust was observed to lift from the

surface and be swept downward off the panel’s edge, validating the system’s mechanical design

and demonstrating the functionality of its cleaning mechanism under static control.

The medium-level engineering requirement of documenting the cleaning process was also

satisfied. Each cleaning cycle was automatically logged to the centralized database hub for

Astraeus, allowing detailed tracking of when and how often brushing routines were executed.

This logging system captured sequence IDs, timestamps, and operation status flags, providing a

structured record for post-test review. In addition, before-and-after photographs were taken for

each panel cleaned, enabling visual analysis of dust and dirt removal. Together, these data

sources offered a complete picture of cleaning performance and operational reliability during the

trial period. To see the data log, refer to Figure 77 located back in chapter 3.

5.1.2 Autonomous Capabilities Results

The autonomous navigation system of Astraeus successfully met all high- and medium-level

engineering requirements related to mobility, obstacle avoidance, target recognition, and return-

to-base functionality. These capabilities were achieved through a combination of sensor-based

logic, onboard April Tag visual markers, and internal data logging managed through the

Raspberry Pi.

To initiate the cleaning sequence, Astraeus autonomously traveled toward the solar panel

using April Tag 1 as the primary navigation reference. Upon entering visual range of AprilTag 2,

the system transitioned to an alignment routine. Astraeus adjusted its heading in response to the

marker’s position and aligned itself with the panel to ensure proper brush positioning. This

alignment was critical for the accuracy of the cleaning operation, and the rover was able to

complete this routine without human assistance.

After cleaning, Astraeus successfully executed a reverse maneuver followed by a 180-

degree turn. It then returned to the starting point using April Tag 3 as its final target. This

 119

confirmed that the rover could return to its original base location autonomously, meeting the

medium-level engineering requirement for return-to-base behavior.

Obstacle avoidance was also validated during testing. Astraeus was able to detect and

avoid large objects placed within its path. The proximity sensors accurately identified obstacles

within a range of 40 cm and halted the rover’s motion to prevent collisions. This behavior was

repeatable across multiple trials and demonstrated compliance with the high-level requirement

for autonomous collision avoidance.

Throughout the process, key navigation events were recorded using a local server hosted

by the onboard Raspberry Pi. Events such as travel initiation, obstacle detection, tag recognition,

alignment, cleaning start, cleaning completion, and return-to-base were each logged with

corresponding timestamps and location tags. A full demonstration of Astraeus performing

autonomous navigation, alignment, obstacle avoidance, cleaning, and return-to-base is available

at the following link: https://youtube.com/shorts/Ls7SQvhasBQ

During navigation testing, the Astraeus rover encountered some performance limitations

with its vision system. As the rover increased in speed, the Huskylens struggled to process the

rapidly changing visual field. The resulting motion blur made it difficult for the camera to

maintain consistent recognition of April Tag markers. When an April Tag moved out of view,

the system registered as lost and immediately triggered a safety protocol. This included logging

the loss event and switching the rover into manual override mode to ensure it did not continue

navigating without visual confirmation. This fail-safe behavior proved essential in preventing

misalignment or unintended movement. The issue was traced to the limited resolution and frame

rate of the HuskyLens AI camera. While higher-end cameras capable of real-time motion

tracking were evaluated, their cost exceeded five hundred dollars and placed them outside the

project’s budget. This limitation presents a clear opportunity for future system upgrades in next-

generation designs.

5.2 Suggestions for Future Work

While the current iteration of the Astraeus rover effectively demonstrates the ability to clean

solar panels in Martian conditions, several enhancements could be made to improve its

autonomy, efficiency, and adaptability. Future iterations of this project could integrate more

https://youtube.com/shorts/Ls7SQvhasBQ

 120

advanced systems to optimize decision-making, power management, and operational longevity.

The following improvements outline key areas for development.

5.2.1 Solar Panel Efficiency Monitoring

One of the main challenges in maintaining solar panels on Mars is determining when cleaning is

necessary. Instead of operating on a fixed schedule, the rover could benefit from a system that

actively measures the efficiency of each solar panel in real-time. This could be achieved by

monitoring power output and comparing it to expected performance under current environmental

conditions. A built-in algorithm could detect a drop in efficiency caused by dust accumulation

and trigger a cleaning cycle only when needed.

This approach would not only optimize power generation but also reduce unnecessary

cleaning cycles, minimizing mechanical wear on the brush system and conserving the rover’s

energy. Sensors such as pyranometers (to measure solar irradiance) or voltage and current

sensors could be integrated to provide real-time efficiency data. This would allow the rover to

prioritize cleaning based on the most affected panels rather than performing routine cleaning on

all panels equally.

5.2.2 Self-Docking Charging Station

Currently, the rover operates on battery power, requiring periodic manual recharging.

Implementing a self-docking charging station would significantly extend its operational time and

autonomy by allowing the rover to recharge without human intervention. By incorporating an

autonomous docking system, the rover could return to a designated charging station when battery

levels reach a critical threshold.

The docking system could include an alignment mechanism using Infrared Proximity

Sensor to help the rover precisely position itself with charging connectors. Magnetic contacts or

inductive charging could be explored to enable a seamless energy transfer process. This feature

would be particularly valuable for long-duration missions where manual recharging is

impractical. Additionally, an automated docking system could facilitate remote updates,

diagnostics, and system recalibration without requiring direct access to the rover, improving

long-term reliability and efficiency.

 121

References

[1] Yvonne K. McKenna, “Humans to Mars,” NASA, Online. Available

at: https://www.nasa.gov/humans-in-space/humans-to-mars.

[2] NASA, "Mars Exploration Rover (MER) - Opportunity," NASA Science,

https://science.nasa.gov/mission/mer-opportunity/ (accessed Jul. 15, 2025).

[3] NASA, Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), NASA Facts, NF-2020-05-

619-HQ, May 2020. [Online]. Available: https://rps.nasa.gov

[4] SolarCleano, "Solar Panel Cleaning Robot – F1," SolarCleano, https://solarcleano.com/product/solar-

panel-cleaning-robot-f1 (accessed Jul. 15, 2025).

[5] A. Verma, C. Yadav, B. Singh, A. Gupta, J. Mishra, and A. Saxena, “Design of Rocker-Bogie

Mechanism,” Int. J. Innov. Sci. Res. Technol., vol. 2, no. 5, pp. 312–316, May 2017.

[6] B. D. Harrington and C. Voorhees, “The challenges of designing the rocker-bogie suspension for the

Mars Exploration Rover,” in Proc. 37th Aerospace Mechanisms Symp., Johnson Space Center, Houston,

TX, USA, May 2004, pp. 185–196.

[7] DFRobot, Metal DC Geared Motor - 12V 100RPM 42kg.cm, SKU: FIT0492-B, Apr. 2017. [Online].

Available: https://www.dfrobot.com/product-1472.html

[8] STMicroelectronics, VNH5019A-E: Automotive Fully Integrated H-Bridge Motor Driver Datasheet,

Rev. 11, Jun. 2017. [Online]. Available: https://www.st.com

[9] Pololu, Micro Metal Gearmotor (N20) Series – Pololu 75:1 Gear Ratio, 12V Motor, Rev. 6.1, Pololu

Corporation, 2023. [Online]. Available: https://www.pololu.com/file/0J1928/pololu-micro-metal-

gearmotors-rev-6-1.pdf

[10] Pololu Corporation, Pololu Maestro Servo Controller User’s Guide, 2022. [Online]. Available:

https://www.pololu.com/docs/0J40/all

https://www.nasa.gov/humans-in-space/humans-to-mars
https://science.nasa.gov/mission/mer-opportunity/
https://rps.nasa.gov/
https://solarcleano.com/product/solar-panel-cleaning-robot-f1
https://solarcleano.com/product/solar-panel-cleaning-robot-f1
https://www.dfrobot.com/product-1472.html
https://www.st.com/
https://www.pololu.com/file/0J1928/pololu-micro-metal-gearmotors-rev-6-1.pdf
https://www.pololu.com/file/0J1928/pololu-micro-metal-gearmotors-rev-6-1.pdf
https://www.pololu.com/docs/0J40/all

 122

[11] Solartech Power, “SPM030P-WP-F: 30 Watt Polycrystalline Solar Panel – Waterproof,”

Solarflexion, [Online]. Available: https://www.solarflexion.com/v/vspfiles/files/pdfs/solartech-

power/SPM030P-WP-F_Data_Sheet.pdf. [Accessed: July 15, 2025].

[12] SHARP Corporation, “GP2D120 Distance Measuring Sensor,” Sharp Datasheet, 2006.

[13] Texas Instruments, ADS111x Ultra-Small, Low-Power, I2C-Compatible, 860SPS, 16-Bit ADCs with

Internal Reference, Oscillator, and Programmable Comparator Datasheet (Rev. E), Dec. 2024. [Online].

Available: https://www.ti.com/lit/pdf/SBAS444

[14] DFRobot, HuskyLens V1.0 AI Vision Sensor, SKU: SEN0305 / SEN0336. Accessed: Jul. 12, 2025.

[Online]. Available: https://wiki.dfrobot.com/HUSKYLENS_V1.0_SKU_SEN0305_SEN0336

[15] RS Components, Raspberry Pi 3 Model B Product Sheet, RS Components, Accessed: Jul. 12, 2025.

[Online]. Available: www.rs-components.com/raspberrypi

[16] Valencia College, “Waste & Recycling,” Sustainability at Valencia College, [Online]. Available:

https://valenciacollege.edu/about/sustainability/waste-recycling.php. [Accessed: Jul. 12, 2025].

[17] Y. Shen, “Electronic product regulations in the United States: An overview,” Compliance Gate.

[Online]. Available: https://www.compliancegate.com/electronic-product-regulations-united-states/.

[Accessed: Feb. 16, 2025].

[18] D. Mewes, “Safeguarding crushing points by limitations of forces,” PubMed, 2003. [Online].

Available: https://pubmed.ncbi.nlm.nih.gov/12820907/. [Accessed: Feb. 15, 2025].

[19] “Hand Injury Risk Assessment,” Occupational Safety and Health Administration (OSHA). [Online].

Available: https://www.osha.gov/hand-injury-prevention. [Accessed: Feb. 18, 2025].

[20] IEEE, “IEEE Code of Ethics,” IEEE.org, 2024. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: Jul. 12, 2025].

https://www.solarflexion.com/v/vspfiles/files/pdfs/solartech-power/SPM030P-WP-F_Data_Sheet.pdf
https://www.solarflexion.com/v/vspfiles/files/pdfs/solartech-power/SPM030P-WP-F_Data_Sheet.pdf
https://www.ti.com/lit/pdf/SBAS444
https://wiki.dfrobot.com/HUSKYLENS_V1.0_SKU_SEN0305_SEN0336
http://www.rs-components.com/raspberrypi
https://valenciacollege.edu/about/sustainability/waste-recycling.php
https://www.compliancegate.com/electronic-product-regulations-united-states/
https://pubmed.ncbi.nlm.nih.gov/12820907/
https://www.osha.gov/hand-injury-prevention
https://www.ieee.org/about/corporate/governance/p7-8.html

 123

APPENDICES

Appendix A – Email Correspondence

Appendix B – VNH5019 Datasheet

Appendix C – Maestro Servo Controller User Guild

Appendix D - Solartech SPM030P-WP-F data sheet

Appendix E – GP2D120 Datasheet

Appendix F – Raspberry Pi 3 Model B Datasheet

Appendix G – Maestro Code Script

Appendix H – Astraeus Source Code

Appendix I – IEEE Code of Ethics

 124

Appendix A – Email Correspondence

In this appendix is the email sent from Dr. Andrea Boca about Solar Panel Positioning

From: Dr. Andreea Boca, Solar Array Specialist, NASA Jet Propulsion Laboratory

Sent: Thursday, May 8, 2025 – 1:03 PM

To: Mark Figueroa mfigueroa88@valenciacollege.edu

Cc: Pedro Cabrera pcabrera6@valenciacollege.edu; Dr. Debbie Hall dhall@valenciacollege.edu

Subject: Re: ASTRAEUS Project Overview (Mark & Pedro)

Hi Mark,

I think assuming that the solar panels you clean are mounted at a 45-degree angle relative to the ground is

as good a starting point as any. Panels in a solar farm on Mars could end up being mounted in pretty

much any orientation, from parallel to the ground all the way to vertical, plus there is also be the

possibility of sun tracking which would translate into a slowly variable angle depending on time of

day/sol. Perhaps a future design iteration of your robot could make the cleaning process adaptable, i.e.

work fine regardless of the angle the panels are mounted at, if feasible. But for now there’s nothing wrong

with starting simple and planning to build up from there later on. Hope this helps,

Andreea.

 125

Appendix B – VNH5019 Datasheet

In this appendix is the datasheet for operating the VNH5019 Motor Drivers.

 126

 127

 128

 129

 130

 131

 132

Appendix C – Maestro Servo Controller User Guild

In this appendix is the important documentation from the Maestro Servo Controller User Guild.

 133

 134

 135

 136

 137

Appendix D – Solartech SPM030P-WP-F data sheet

In this appendix is the important documentation for the Solartech SPM030P-WP-F data sheet.

 138

 139

Appendix E – GP2D120 Datasheet

In this appendix is the important documentation from the GP2D120 IR sensors.

 140

 141

 142

 143

 144

Appendix F – Raspberry Pi 3 Model B

In this appendix is the important documentation from the Raspberry Pi 3 Model B datasheet.

 145

 146

 147

Appendix G – Maestro Code Script

The following appendix shows the Maestro configuration file showing serial settings, servo channel

assignments, motion sequences, and onboard scripts used to automate the Astraeus robotic arm

<!--Pololu Maestro servo controller settings file, http://www.pololu.com/catalog/product/1350-->

<UscSettings version="1">

 <NeverSuspend>false</NeverSuspend>

 <SerialMode>USB_DUAL_PORT</SerialMode>

 <FixedBaudRate>9600</FixedBaudRate>

 <SerialTimeout>0</SerialTimeout>

 <EnableCrc>false</EnableCrc>

 <SerialDeviceNumber>12</SerialDeviceNumber>

 <SerialMiniSscOffset>0</SerialMiniSscOffset>

 <Channels MiniMaestroServoPeriod="80000" ServoMultiplier="1">

 <!--Period = 20 ms-->

 <!--Channel 0-->

 <Channel name="Base" mode="Servo" min="3968" max="8000" homemode="Off" home="3968"

speed="10" acceleration="10" neutral="6000" range="1905" />

 <!--Channel 1-->

 <Channel name="Shoulder" mode="Servo" min="3968" max="8000" homemode="Off" home="3968"

speed="5" acceleration="5" neutral="6000" range="1905" />

 <!--Channel 2-->

 <Channel name="Elbow" mode="Servo" min="3968" max="8000" homemode="Off" home="3968"

speed="10" acceleration="10" neutral="6000" range="1905" />

 <!--Channel 3-->

 <Channel name="Wrist U/D" mode="Servo" min="3968" max="8000" homemode="Off"

home="3968" speed="10" acceleration="10" neutral="6000" range="1905" />

 <!--Channel 4-->

 <Channel name="Wrist L/R" mode="Servo" min="3968" max="8000" homemode="Off"

home="3968" speed="10" acceleration="10" neutral="6000" range="1905" />

 <!--Channel 5-->

 <Channel name="" mode="Servo" min="3968" max="8000" homemode="Off" home="3968"

speed="0" acceleration="0" neutral="6000" range="1905" />

 <!--Channel 6-->

 <Channel name="" mode="Servo" min="3968" max="8000" homemode="Off" home="3968"

speed="0" acceleration="0" neutral="6000" range="1905" />

 <!--Channel 7-->

 <Channel name="" mode="Servo" min="3968" max="8000" homemode="Off" home="3968"

speed="0" acceleration="0" neutral="6000" range="1905" />

 <!--Channel 8-->

 <Channel name="" mode="Servo" min="3968" max="8000" homemode="Off" home="3968"

speed="0" acceleration="0" neutral="6000" range="1905" />

 <!--Channel 9-->

 <Channel name="" mode="Servo" min="3968" max="8000" homemode="Off" home="3968"

speed="0" acceleration="0" neutral="6000" range="1905" />

 <!--Channel 10-->

 <Channel name="" mode="Servo" min="3968" max="8000" homemode="Off" home="3968"

speed="0" acceleration="0" neutral="6000" range="1905" />

 148

 <!--Channel 11-->

 <Channel name="" mode="Servo" min="3968" max="8000" homemode="Off" home="3968"

speed="0" acceleration="0" neutral="6000" range="1905" />

 </Channels>

 <Sequences>

 <Sequence name="Sequence 0" useSpeedAndAcceleration="false">

 <Frame name="Initial Position" duration="500">6000 6000 7549 6000 6000 0 0 0 0 0 0 0 s 10 10 10

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 </Sequence>

 <Sequence name="Sequence 1" useSpeedAndAcceleration="false">

 <Frame name="Initial Position" duration="2000">6000 6000 7549 6000 6000 0 0 0 0 0 0 0 s 10 5 10

10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ElbowExtension" duration="3750">6000 6000 4202 6000 6000 0 0 0 0 0 0 0 s 10 10

10 10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="WristAdjustment" duration="2000">6000 6000 4202 7060 6140 0 0 0 0 0 0 0 s 10 10

10 10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="BaseRotation" duration="1000">6277 6000 4202 7060 6140 0 0 0 0 0 0 0 s 10 10 10

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ArmExtension" duration="4000">6277 7745 4202 8000 6140 0 0 0 0 0 0 0 s 10 5 10

10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="SweepDownL" duration="3000">6512 6903 6551 7393 6081 0 0 0 0 0 0 0 s 10 5 10

10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="Center" duration="1000">5944 7060 6336 7021 5905 0 0 0 0 0 0 0 s 10 5 10 10 10 0

0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="Raise For Clearance" duration="1500">5944 6277 6336 6355 5905 0 0 0 0 0 0 0 s 10

5 10 10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="CenterElbowExtension" duration="2750">6000 6000 4202 6000 6000 0 0 0 0 0 0 0 s

10 10 10 10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="CenterWristAdjustment" duration="2000">6000 6000 4202 7060 6000 0 0 0 0 0 0 0 s

10 5 10 10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="CenterArmExtension" duration="4000">6000 7647 4202 7510 5827 0 0 0 0 0 0 0 s

10 5 10 10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="CenterSweepDown" duration="3000">6000 6649 6884 7608 5827 0 0 0 0 0 0 0 s 10

5 10 10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="Raise For Clearance" duration="1500">5944 6277 6336 6355 5905 0 0 0 0 0 0 0 s 10

5 10 10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ElbowExtension2" duration="2750">6000 6000 4202 6000 6000 0 0 0 0 0 0 0 s 10 10

10 10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="WristAdjustment2" duration="2000">6000 6000 4202 7060 5435 0 0 0 0 0 0 0 s 10 5

10 10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="BaseRotation2" duration="1000">5592 6000 4202 7060 5435 0 0 0 0 0 0 0 s 10 5 10

10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ArmExtension2" duration="4000">5592 7745 4202 7804 5396 0 0 0 0 0 0 0 s 10 5 10

10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="SweepDownR" duration="3000">5592 6766 6590 7432 5435 0 0 0 0 0 0 0 s 10 5 10

10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="Center" duration="1000">5944 7060 6336 7021 5905 0 0 0 0 0 0 0 s 10 5 10 10 10 0

0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="Raise For Clearance" duration="1500">5944 6277 6336 6355 5905 0 0 0 0 0 0 0 s 10

5 10 10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 149

 <Frame name="Initial Position" duration="2000">6000 6000 7549 6000 6000 0 0 0 0 0 0 0 s 10 5 10

10 10 0 0 0 0 0 0 0 a 10 5 10 10 10 0 0 0 0 0 0 0</Frame>

 </Sequence>

 <Sequence name="Sequence 1.1" useSpeedAndAcceleration="false">

 <Frame name="Initial Position" duration="2000">6000 6000 7549 6000 6000 0 0 0 0 0 0 0 s 10 10 10

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ElbowExtension" duration="3750">6000 6000 4202 6000 6000 0 0 0 0 0 0 0 s 10 10

10 10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="WristAdjustment" duration="2000">6000 6000 4202 7060 6140 0 0 0 0 0 0 0 s 10 10

10 10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="BaseRotation" duration="1000">6277 6000 4202 7060 6140 0 0 0 0 0 0 0 s 10 10 10

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ArmExtension" duration="3000">6277 7745 4202 6982 6140 0 0 0 0 0 0 0 s 10 10 10

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ShiftRight" duration="2000">5592 7745 4202 7060 5435 0 0 0 0 0 0 0 s 10 10 10 10

10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ShiftDown" duration="1000">5592 7451 4809 7060 5435 0 0 0 0 0 0 0 s 10 10 10 10

10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ShiftLeft" duration="2000">6512 7549 4809 6845 5964 0 0 0 0 0 0 0 s 10 10 10 10

10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ShiftDown2" duration="1000">6297 7099 5396 6845 6062 0 0 0 0 0 0 0 s 10 10 10

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ShiftRight2" duration="2000">5670 7119 5396 7021 5377 0 0 0 0 0 0 0 s 10 10 10 10

10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ShiftDown3" duration="1000">5651 7080 5768 6962 5494 0 0 0 0 0 0 0 s 10 10 10

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ShiftLeft2" duration="2000">6414 7021 5768 6962 6023 0 0 0 0 0 0 0 s 10 10 10 10

10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ShiftDown4" duration="1000">6414 6825 6238 7158 6023 0 0 0 0 0 0 0 s 10 10 10

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ShiftRight3" duration="2000">5475 7119 5749 6766 5377 0 0 0 0 0 0 0 s 10 10 10 10

10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ShiftDown5" duration="1000">5475 6903 6297 6962 5318 0 0 0 0 0 0 0 s 10 10 10

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="Shiftleft3" duration="2000">6590 6825 6297 6962 6179 0 0 0 0 0 0 0 s 10 10 10 10

10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="Center" duration="1000">5905 6982 6453 7001 5651 0 0 0 0 0 0 0 s 10 10 10 10 10 0

0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="ClearanceRaise" duration="2000">5905 6473 6453 6316 5651 0 0 0 0 0 0 0 s 10 10

10 10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 <Frame name="Initial Position" duration="2000">6000 6000 7549 6000 6000 0 0 0 0 0 0 0 s 10 10 10

10 10 0 0 0 0 0 0 0 a 10 10 10 10 10 0 0 0 0 0 0 0</Frame>

 </Sequence>

 </Sequences>

 <Script ScriptDone="true">### Sequence subroutines: ###

Sequence 0

sub Sequence_0

 500 6000 6000 7549 6000 6000 0

 0 0 0 0 0 0 frame_0..11 # Initial Position

 return

 150

Sequence 1

sub Sequence_1

 2000 6000 6000 7549 6000 6000 0

 0 0 0 0 0 0 frame_0..11 # Initial Position

 3750 4202 frame_2 # ElbowExtension

 2000 7060 6140 frame_3_4 # WristAdjustment

 1000 6277 frame_0 # BaseRotation

 4000 7745 8000 frame_1_3 # ArmExtension

 3000 6512 6903 6551 7393 6081 frame_0..4 # SweepDownL

 1000 5944 7060 6336 7021 5905 frame_0..4 # Center

 1500 6277 6355 frame_1_3 # Raise For Clearance

 2750 6000 6000 4202 6000 6000 frame_0..4 # CenterElbowExtension

 2000 7060 frame_3 # CenterWristAdjustment

 4000 7647 7510 5827 frame_1_3_4 # CenterArmExtension

 3000 6649 6884 7608 frame_1..3 # CenterSweepDown

 1500 5944 6277 6336 6355 5905 frame_0..4 # Raise For Clearance

 2750 6000 6000 4202 6000 6000 frame_0..4 # ElbowExtension2

 2000 7060 5435 frame_3_4 # WristAdjustment2

 1000 5592 frame_0 # BaseRotation2

 4000 7745 7804 5396 frame_1_3_4 # ArmExtension2

 3000 6766 6590 7432 5435 frame_1..4 # SweepDownR

 1000 5944 7060 6336 7021 5905 frame_0..4 # Center

 1500 6277 6355 frame_1_3 # Raise For Clearance

 2000 6000 6000 7549 6000 6000 frame_0..4 # Initial Position

 return

Sequence 1.1

sub Sequence_11

 2000 6000 6000 7549 6000 6000 0

 0 0 0 0 0 0 frame_0..11 # Initial Position

 3750 4202 frame_2 # ElbowExtension

 2000 7060 6140 frame_3_4 # WristAdjustment

 1000 6277 frame_0 # BaseRotation

 3000 7745 6982 frame_1_3 # ArmExtension

 2000 5592 7060 5435 frame_0_3_4 # ShiftRight

 1000 7451 4809 frame_1_2 # ShiftDown

 2000 6512 7549 6845 5964 frame_0_1_3_4 # ShiftLeft

 1000 6297 7099 5396 6062 frame_0..2_4 # ShiftDown2

 2000 5670 7119 7021 5377 frame_0_1_3_4 # ShiftRight2

 1000 5651 7080 5768 6962 5494 frame_0..4 # ShiftDown3

 2000 6414 7021 6023 frame_0_1_4 # ShiftLeft2

 1000 6825 6238 7158 frame_1..3 # ShiftDown4

 2000 5475 7119 5749 6766 5377 frame_0..4 # ShiftRight3

 1000 6903 6297 6962 5318 frame_1..4 # ShiftDown5

 2000 6590 6825 6179 frame_0_1_4 # Shiftleft3

 1000 5905 6982 6453 7001 5651 frame_0..4 # Center

 2000 6473 6316 frame_1_3 # ClearanceRaise

 2000 6000 6000 7549 6000 6000 frame_0..4 # Initial Position

 return

sub frame_0..11

 11 servo

 151

 10 servo

 9 servo

 8 servo

 7 servo

 6 servo

 5 servo

 4 servo

 3 servo

 2 servo

 1 servo

 0 servo

 delay

 return

sub frame_2

 2 servo

 delay

 return

sub frame_3_4

 4 servo

 3 servo

 delay

 return

sub frame_0

 0 servo

 delay

 return

sub frame_1_3

 3 servo

 1 servo

 delay

 return

sub frame_0..4

 4 servo

 3 servo

 2 servo

 1 servo

 0 servo

 delay

 return

sub frame_3

 3 servo

 delay

 return

sub frame_1_3_4

 152

 4 servo

 3 servo

 1 servo

 delay

 return

sub frame_1..3

 3 servo

 2 servo

 1 servo

 delay

 return

sub frame_1..4

 4 servo

 3 servo

 2 servo

 1 servo

 delay

 return

sub frame_0_3_4

 4 servo

 3 servo

 0 servo

 delay

 return

sub frame_1_2

 2 servo

 1 servo

 delay

 return

sub frame_0_1_3_4

 4 servo

 3 servo

 1 servo

 0 servo

 delay

 return

sub frame_0..2_4

 4 servo

 2 servo

 1 servo

 0 servo

 delay

 return

sub frame_0_1_4

 153

 4 servo

 1 servo

 0 servo

 delay

 return

</Script>

</UscSettings>

 154

Appendix H – Astraeus Source Code

The following appendix documents the comprehensive source code that Astraeus runs on.

Appendix H.1 – start_all.py

This script serves as the entry point for the system, initializing shared memory and launching

both the Flask web server and the main control loop as separate processes using Python’s

multiprocessing module.

1 import multiprocessing

2 import os

3 import sys

4 from multiprocessing import Process, Manager

5

6 # Path setup for dashboard access

7 BASE_DIR = os.path.dirname(os.path.abspath(__file__))

8 DASHBOARD_DIR = os.path.join(BASE_DIR, "dashboard")

9 sys.path.append(DASHBOARD_DIR)

10

11 #PROCESS TARGETS

12 def run_flask(shared):

13 from shared_state import set_shared

14 set_shared(shared)

15

16 from app import app

17 print("[BOOT] Flask process starting...", flush=True)

18 app.run(host='0.0.0.0', port=5000, debug=False)

19

20 def run_main(shared):

21 from shared_state import set_shared

22 set_shared(shared)

23

24 from main import main_loop

25 print("[BOOT] Main control loop starting...", flush=True)

26 main_loop()

27

28 # MAIN RUNNER

29 if __name__ == "__main__":

30 multiprocessing.set_start_method("spawn", force=True)

31

32 # Initialize shared memory once here

33 manager = Manager()

 155

34 shared = manager.dict({

35 "command": None,

36 "speed": 40,

37 "mode": "idle",

38 "task": None

39 })

40

41 print("[BOOT] Launching Flask and Main loop in parallel", flush=True)

42

43 p1 = Process(target=run_flask, args=(shared,))

44 p2 = Process(target=run_main, args=(shared,))

45

46 p1.start()

47 p2.start()

48

49 print("[BOOT] Both processes started", flush=True)

50

51 p1.join()

52 p2.join()

53

 156

Appendix H.2 – main.py

This file contains the main control loop for the system. It continuously checks the selected mode

(manual or autonomous) and executes the appropriate behavior, including handling commands,

triggering sequences, and running alignment or cleaning tasks.

1 import os

2 import sys

3 import time

4

5 # Path setup to access dashboard utilities

6 BASE_DIR = os.path.dirname(os.path.abspath(__file__))

7 DASHBOARD_DIR = os.path.join(BASE_DIR, "dashboard")

8 sys.path.append(DASHBOARD_DIR)

9

10 # Shared state

11 from command_center import get_command, get_speed, clear_command, get_task,

clear_task, get_mode

12 from maestro_module import trigger_sequence

13 from autonomy import run_autonomy, autonomy_busy, alignment_sequence

14 from logger import log_event, log_warning, log_alert

15 import motors

16 from motors import send_drive_command

17

18 #Manual Command Handling

19 def handle_manual():

20 cmd = get_command()

21 speed = get_speed()

22

23 if cmd:

24 print(f"[MANUAL] Received command: {cmd} | Speed: {speed}%")

25

26 # special functions

27 if cmd == "align1":

28 log_event("[MANUAL] Aligning with Tag 2 (Panel 1)")

29 success = alignment_sequence(2)

30 if success:

31 log_event("[MANUAL] Alignment with Tag 2 successful")

32 else:

33 log_warning("[MANUAL] Alignment with Tag 2 failed")

34

35 elif cmd == "align2":

36 log_event("[MANUAL] Aligning with Tag 3 (Panel 2)")

37 success = alignment_sequence(3)

 157

38 if success:

39 log_event("[MANUAL] Alignment with Tag 3 successful")

40 else:

41 log_warning("[MANUAL] Alignment with Tag 3 failed")

42

43 elif cmd == "seq1":

44 log_event("Sequence 1 initiated. On standby for 40 seconds.")

45 trigger_sequence(1)

46 time.sleep(2)

47 motors.run_cleaner(100)

48 time.sleep(43)

49 motors.stop_cleaner()

50 time.sleep(4)

51 print("[MANUAL] Sequence 1 complete.")

52

53 elif cmd == "seq2":

54 log_event("Sequence 2 initiated. On standby for 60 seconds.")

55 trigger_sequence(2)

56 time.sleep(2)

57 motors.run_cleaner(100)

58 time.sleep(43)

59 motors.stop_cleaner()

60 time.sleep(4)

61 print("[MANUAL] Sequence 2 complete.")

62

63 else:

64 send_drive_command(cmd, speed)

65

66 clear_command()

67

68 #Autonomous Task Handling

69 def handle_autonomy():

70 if autonomy_busy:

71 return #Already running

72

73 task = get_task()

74 if task and task != "None":

75 print(f"[AUTO] Starting task: {task}")

76 run_autonomy(task)

77 clear_task()

78

79 #Main Loop

80 def main_loop():

81 print("MAIN LOOP is running!")

82 last_mode = None

 158

83

84 while True:

85 mode = get_mode()

86

87 if mode != last_mode:

88 print(f"[MAIN] Mode switched to: {mode}")

89 last_mode = mode

90

91 if mode == "manual":

92 if not autonomy_busy:

93 handle_manual()

94 else:

95 print("[MAIN] Ignored manual input — autonomy is active.")

96

97 elif mode == "autonomous":

98 handle_autonomy()

99

100 time.sleep(0.2)

101

102 if __name__ == "__main__":

103 motors.setup()

104 main_loop()

 159

Appendix H.3 – autonomy.py

This module manages the autonomous behavior of the rover. It includes logic for driving toward

and aligning with AprilTags, executing cleaning sequences, transitioning between panels, and

returning home. It also includes fail-safes and emergency stop mechanisms to handle obstacles

and vision loss during operation.

1 import time

2 from visual_module import get_tag_data

3 from sharp_sensor import emergency_stop_check, get_smoothed_distances

4 from maestro_module import trigger_sequence

5 import motors

6 from motors import run_cleaner, stop_cleaner

7 from logger import log_event, log_warning, log_alert

8 from command_center import set_mode

9

10 #configurable thresholds

11 TAG4_STOP_WIDTH = 100 # Adjustable: real-world tested width to stop at

home

12 ALERT_INTERVAL = 10 # Seconds between lost tag alerts

13 ALIGN_X_CENTER = 160 # Center of frame (x)

14 ALIGN_TOLERANCE = 30 # Pixel tolerance for alignment

15 ALIGN_WIDTH_THRESHOLD = 150 # Tag width threshold for closeness

16 SHARP_TOLERANCE = 3 #cm diff between left and right sensors

17 FORWARD_SPEED = 13

18 ADJUST_SPEED_LOW = 9

19 ADJUST_SPEED_HIGH = 13

20 BACKOFF_SPEED = -20

21 BACKOFF_DURATION = 0.5

22 MIN_SAFE_DISTANCE_CM = 7

23 MAX_TRACK_SPEED = 15

24 CENTER_X = 160

25 MAX_DEVIATION = 160 #Full frame width deviation from center = full

steering effect

26 MAX_TAG_SPEED = 15

27

28 # === Runtime flags ===

29 autonomy_busy = False

30 _e_stop_enabled = False

31 _last_alert_time = {} #Track last alert time per tag_id

32

33 def log_alert_throttled(tag_id, msg):

34 now = time.time()

 160

35 if tag_id not in _last_alert_time or now - _last_alert_time[tag_id] >=

ALERT_INTERVAL:

36 log_alert(f"[ALERT] Tag {tag_id} lost: {msg}")

37 _last_alert_time[tag_id] = now

38

39 def fail_and_switch_to_manual(reason):

40 log_alert(f"[AUTO FAIL] {reason} - switching to manual mode.")

41 motors.stop_motors()

42 set_mode("manual")

43

44 def drive_until_tag_detected(primary_tag, target_tag, timeout=30):

45 """

46 Drives toward `primary_tag` but switches to `target_tag` when seen.

47 Includes grace period if tags are briefly lost before failing.

48 """

49 print(f"[AUTO] Driving toward Tag {primary_tag}, watching for Tag

{target_tag}...")

50 last_seen_time = time.time()

51 grace_period = 10 # Seconds to allow brief tag loss before fail

52 base_speed = MAX_TAG_SPEED

53 steer_aggression = 0.85 # More aggressive steering response

54

55 while True:

56 if _e_stop_enabled:

57 emergency_stop_check()

58

59 primary_data = get_tag_data(primary_tag)

60 target_data = get_tag_data(target_tag)

61

62 # Target tag found? Switch now

63 if target_data:

64 print(f"[AUTO] Tag {target_tag} detected! Switching pursuit.")

65 return True

66

67 #still following primary tag

68 if primary_data:

69 last_seen_time = time.time() #reset loss timer

70 x = primary_data['x']

71 error = x - CENTER_X

72 correction = min(1.0, abs(error) / MAX_DEVIATION)

73 adjustment = int(correction * base_speed * steer_aggression)

74

75 if error > 0:

76 left = base_speed - adjustment

77 right = base_speed + adjustment

 161

78 else:

79 left = base_speed + adjustment

80 right = base_speed - adjustment

81

82 motors.set_motor_speed(left, right)

83

84 else:

85 # Tag not visible — stop but don't fail immediately

86 motors.stop_motors()

87 time_since_seen = time.time() - last_seen_time

88

89 if time_since_seen >= grace_period:

90 log_warning(f"[AUTO] Tag not seen for

{int(time_since_seen)}s... holding...")

91 if time_since_seen >= timeout:

92 log_alert_throttled(target_tag, f"Timed out after

{timeout}s without seeing any tag")

93 return False

94

95 time.sleep(0.1)

96

97 def drive_to_tag(tag_id, stop_at_width=None):

98 print(f"[AUTO] Driving to Tag {tag_id}...")

99

100 while True:

101 if _e_stop_enabled:

102 emergency_stop_check()

103

104 data = get_tag_data(tag_id)

105

106 if data:

107 x = data['x']

108 width = data['w']

109 print(f"[AUTO] Tag {tag_id} visible | X={x} W={width}")

110

111 if stop_at_width and width >= stop_at_width:

112 motors.stop_motors()

113 print(f"[AUTO] Tag {tag_id} width reached stop threshold

({stop_at_width})")

114 return True

115

116 # Steering Logic

117 error = x - CENTER_X # + = too far right, - = too far left

118 steer = max(-1.0, min(1.0, error / MAX_DEVIATION)) #

normalize -1 to 1

 162

119 adjustment = int(steer * MAX_TRACK_SPEED * 0.6) # scale

effect (~60% max turn)

120

121 left_speed = MAX_TRACK_SPEED - adjustment

122 right_speed = MAX_TRACK_SPEED + adjustment

123

124 # Clamp speeds

125 left_speed = max(-100, min(100, left_speed))

126 right_speed = max(-100, min(100, right_speed))

127

128 motors.set_motor_speed(left_speed, right_speed)

129

130 else:

131 log_alert_throttled(tag_id, "Not visible during drive")

132 motors.stop_motors()

133

134 time.sleep(0.1)

135

136 def alignment_sequence(tag_id):

137 print(f"[AUTO] Starting alignment sequence with Tag {tag_id}...")

138

139 #tunable Parameters

140 ALIGNMENT_DISTANCE_THRESHOLD = 40.0

141 STOP_DISTANCE = 14.0

142 MAX_REVERSE_ATTEMPTS = 3

143 APPROACH_SPEED = 12

144 BOOST_SPEED = 15

145 TURN_FORCE = 1.4

146

147 X_TARGET = 162

148 X_TOLERANCE = 30

149 IR_DIFF_TOL = 5

150 WIDTH_MIN = 160

151 FINAL_HOLD_TIME = 2

152

153 # state Tracking

154 lost_tag_start = None

155 lost_attempts = 0

156 reverse_attempts = 0

157 TAG_LOST_GRACE = 5

158 stable_start = None

159

160 while True:

161 data = get_tag_data(tag_id)

162

 163

163 if not data:

164 if not lost_tag_start:

165 lost_tag_start = time.time()

166 print("[AUTO] Tag temporarily lost. Starting grace

timer...")

167 elif time.time() - lost_tag_start > TAG_LOST_GRACE:

168 lost_attempts += 1

169 print(f"[AUTO] Tag not found. Reversing... (Attempt

{lost_attempts})")

170 motors.set_motor_speed(-20, -20)

171 time.sleep(0.5)

172 motors.stop_motors()

173 lost_tag_start = None

174 if lost_attempts > 3:

175 log_alert(f"[AUTO FAIL] Could not complete alignment

with Tag {tag_id}")

176 return False

177 else:

178 motors.stop_motors()

179 time.sleep(0.1)

180 continue

181

182 lost_tag_start = None

183

184 # sensor & Tag Data

185 x = data['x']

186 width = data['w']

187 left_cm, right_cm = get_smoothed_distances()

188 avg_ir = (left_cm + right_cm) / 2

189 ir_diff = abs(left_cm - right_cm)

190 x_error = abs(x - X_TARGET)

191

192 print(f"[ALIGN] X={x:.1f} W={width:.1f} IR_L={left_cm:.1f}

IR_R={right_cm:.1f}")

193

194 #Final Success Check (Override Everything)

195 if (x_error <= X_TOLERANCE and

196 width >= WIDTH_MIN and

197 ir_diff <= IR_DIFF_TOL and

198 left_cm <= STOP_DISTANCE and

199 right_cm <= STOP_DISTANCE):

200

201 motors.stop_motors()

202 if not stable_start:

203 stable_start = time.time()

 164

204 elif time.time() - stable_start >= FINAL_HOLD_TIME:

205 print("[AUTO] Alignment + approach confirmed. Complete.")

206 log_event(f"[AUTO] Final alignment success with Tag

{tag_id}")

207 return True

208 else:

209 print("[AUTO] Holding to confirm alignment stability...")

210 time.sleep(0.25)

211 continue

212 else:

213 stable_start = None

214

215 #Case: TOO CLOSE + NOT ALIGNED

216 if avg_ir < STOP_DISTANCE + 3 and x_error > X_TOLERANCE:

217 if reverse_attempts < MAX_REVERSE_ATTEMPTS:

218 print("[RECOVERY] Too close and misaligned. Backing

up...")

219 motors.set_motor_speed(-20, -20)

220 time.sleep(0.5)

221 motors.stop_motors()

222 reverse_attempts += 1

223 continue

224 else:

225 log_alert("[AUTO FAIL] Cannot align due to close

proximity.")

226 return False

227

228 # Case: FAR ENOUGH, DO FULL ALIGNMENT

229 if avg_ir >= ALIGNMENT_DISTANCE_THRESHOLD:

230 print("[STAGE 1] Long-range alignment in progress...")

231 if x < X_TARGET - X_TOLERANCE:

232 motors.set_motor_speed(-int(BOOST_SPEED * TURN_FORCE),

BOOST_SPEED)

233 elif x > X_TARGET + X_TOLERANCE:

234 motors.set_motor_speed(BOOST_SPEED, -int(BOOST_SPEED *

TURN_FORCE))

235 elif ir_diff > IR_DIFF_TOL:

236 if left_cm > right_cm:

237 motors.set_motor_speed(BOOST_SPEED - 2, BOOST_SPEED +

2)

238 else:

239 motors.set_motor_speed(BOOST_SPEED + 2, BOOST_SPEED -

2)

240 else:

241 motors.set_motor_speed(BOOST_SPEED, BOOST_SPEED)

 165

242

243 # case: Aligned but not at panel → move in carefully

244 elif (x_error <= X_TOLERANCE and width >= WIDTH_MIN and ir_diff <=

IR_DIFF_TOL):

245 print("[STAGE 2] Approaching panel slowly...")

246 motors.set_motor_speed(APPROACH_SPEED, APPROACH_SPEED)

247

248 # Case: Mid-range and off alignment, adjust while approaching

249 else:

250 print("[STAGE 3] Mid-range adjustment...")

251 if x < X_TARGET - X_TOLERANCE:

252 motors.set_motor_speed(-int(APPROACH_SPEED * TURN_FORCE),

APPROACH_SPEED)

253 elif x > X_TARGET + X_TOLERANCE:

254 motors.set_motor_speed(APPROACH_SPEED, -int(APPROACH_SPEED

* TURN_FORCE))

255 elif ir_diff > IR_DIFF_TOL:

256 if left_cm > right_cm:

257 motors.set_motor_speed(APPROACH_SPEED - 2,

APPROACH_SPEED + 2)

258 else:

259 motors.set_motor_speed(APPROACH_SPEED + 2,

APPROACH_SPEED - 2)

260 else:

261 motors.set_motor_speed(APPROACH_SPEED, APPROACH_SPEED)

262

263 time.sleep(0.25)

264

265 def reverse_and_turn_180():

266 print("[AUTO] Reversing before 180 turn...")

267 motors.set_motor_speed(-30, -30)

268 time.sleep(1.0)

269 print("[AUTO] Performing 180 turn...")

270 motors.set_motor_speed(40, -40)

271 time.sleep(3.7)

272 motors.stop_motors()

273 print("[AUTO] 180 turn complete.")

274

275 def transition_to_next_panel():

276 print("Step 1: Reverse curve right (left wheel faster)...")

277 motors.set_motor_speed(-40, -20)

278 time.sleep(0.8)

279

280 print("Step 2: Rotate left to face Panel 2...")

 166

281 motors.set_motor_speed(30, -30)

282 time.sleep(0.6)

283

284 motors.stop_motors()

285 print("Reposition complete. Ready to align with Panel 2.")

286

287 def return_home():

288 global _e_stop_enabled

289 log_event("[AUTO] Returning home via Tag 4")

290 reverse_and_turn_180()

291

292 _e_stop_enabled = True

293 timeout = 20 # seconds without seeing tag triggers failure

294 last_seen_time = time.time()

295

296 print("[AUTO] Seeking Tag 4 for home return...")

297 while True:

298 if _e_stop_enabled:

299 emergency_stop_check()

300

301 data = get_tag_data(4)

302 if data:

303 last_seen_time = time.time() # reset timeout

304 x = data['x']

305 width = data['w']

306 log_event(f"[AUTO] Tag 4 visible | X={x} W={width}")

307

308 if width >= TAG4_STOP_WIDTH:

309 motors.stop_motors()

310 log_event("[AUTO] Rover successfully returned to home

position.")

311 break

312

313 # Steering logic

314 error = x - CENTER_X

315 steer = max(-1.0, min(1.0, error / MAX_DEVIATION))

316 adjustment = int(steer * MAX_TRACK_SPEED * 0.6)

317 left_speed = MAX_TRACK_SPEED - adjustment

318 right_speed = MAX_TRACK_SPEED + adjustment

319

320 left_speed = max(-100, min(100, left_speed))

321 right_speed = max(-100, min(100, right_speed))

322 motors.set_motor_speed(left_speed, right_speed)

323 else:

324 motors.stop_motors()

 167

325 log_warning("[AUTO] Tag 4 not currently visible")

326

327 if time.time() - last_seen_time > timeout:

328 _e_stop_enabled = False

329 motors.stop_motors()

330 fail_and_switch_to_manual("Failed to detect Tag 4 during

return home")

331 return

332

333 time.sleep(0.1)

334

335 _e_stop_enabled = False

336

337 def run_autonomy(task):

338 global autonomy_busy, _e_stop_enabled

339 if autonomy_busy:

340 log_warning("[AUTO] Already running. Ignoring duplicate task.")

341 return

342

343 autonomy_busy = True

344 try:

345 log_event(f"[AUTO] Starting task: {task}")

346

347 if task == "panel1":

348 _e_stop_enabled = True

349 if not drive_until_tag_detected(1, 2, timeout=20):

350 fail_and_switch_to_manual("Lost sight of both Tag 1 and

Tag 2 during approach")

351 return

352 _e_stop_enabled = False

353

354 if not alignment_sequence(2):

355 fail_and_switch_to_manual("Alignment with Tag 2 failed")

356 return

357

358 log_event("Sequence 1 initiated. On standby for 40 seconds.")

359 trigger_sequence(1)

360 time.sleep(2)

361 motors.run_cleaner(100)

362 time.sleep(43)

363 motors.stop_cleaner()

364 time.sleep(4)

365

366 log_event("Returning home...")

 168

367 return_home()

368

369 elif task == "panel2":

370 _e_stop_enabled = True

371 if not drive_until_tag_detected(1, 3, timeout=20):

372 fail_and_switch_to_manual("Lost sight of both Tag 1 and

Tag 3 during approach")

373 return

374 _e_stop_enabled = False

375

376 if not alignment_sequence(3):

377 fail_and_switch_to_manual("Alignment with Tag 3 failed")

378 return

379

380 log_event("Sequence 1 initiated. On standby for 40 seconds.")

381 trigger_sequence(1)

382 time.sleep(2)

383 motors.run_cleaner(100)

384 time.sleep(43)

385 motors.stop_cleaner()

386 time.sleep(4)

387 log_event("Returning home...")

388 return_home()

389

390 elif task == "all":

391 _e_stop_enabled = True

392 if not drive_until_tag_detected(1, 2, timeout=20):

393 fail_and_switch_to_manual("Lost sight of both Tag 1 and

Tag 2 during approach")

394 return

395 _e_stop_enabled = False

396

397 if not alignment_sequence(2):

398 fail_and_switch_to_manual("Alignment with Tag 2 failed")

399 return

400

401 log_event("Sequence 1 initiated. On standby for 40 seconds.")

402 run_cleaner(50)

403 trigger_sequence(1)

404 time.sleep(40)

405 stop_cleaner()

406

407 log_event("Transitioning to Panel 2...")

408 transition_to_next_panel()

409

 169

410 _e_stop_enabled = True

411 #try to align with Tag 3 immediately. If not visible, fallback

to drive_until

412 if not get_tag_data(3):

413 if not drive_until_tag_detected(1, 3, timeout=20):

414 fail_and_switch_to_manual("Lost sight of both Tag 1

and Tag 3 after transition")

415 return

416 _e_stop_enabled = False

417

418 if not alignment_sequence(3):

419 fail_and_switch_to_manual("Alignment with Tag 3 failed")

420 return

421

422 log_event("Sequence 1 initiated. On standby for 40 seconds.")

423 run_cleaner(50)

424 trigger_sequence(1)

425 time.sleep(40)

426 stop_cleaner()

427

428 log_event("Returning home...")

429 return_home()

430

431 else:

432 log_warning(f"[AUTO] Unknown task: {task}")

433

434 finally:

435 autonomy_busy = False

436 print("[AUTO] Task complete. Autonomy released.")

437

438 #Standalone Testing

439 if __name__ == "__main__":

440 print("[TEST] Autonomy Movement Test Mode")

441 while True:

442 print("\nSelect a test:")

443 print("1. Test 180° Turn")

444 print("2. Test Reverse and Realign (Panel Transition)")

445 print("3. Exit")

446 choice = input("Enter choice (1/2/3): ").strip()

447

448 if choice == "1":

449 reverse_and_turn_180()

450 elif choice == "2":

 170

451 transition_to_next_panel()

452 elif choice == "3":

453 print("Exiting test mode.")

454 break

455 else:

456 print("Invalid selection.")

457

 171

Appendix H.4 – motors.py

This file controls all motor functions using the gpiozero library, including drive motors and the

cleaning mechanism. It provides utility functions to set motor speeds, run the cleaner, stop all

movement, and interpret high-level drive commands like forward, backward, or turn.

1 from gpiozero import Motor, PWMOutputDevice

2 from time import sleep

3

4 # Pin Config (BCM)

5 LEFT_IN_A = 17

6 LEFT_IN_B = 27

7 LEFT_PWM = 18

8

9 RIGHT_IN_A = 23

10 RIGHT_IN_B = 24

11 RIGHT_PWM = 19

12

13 CLEAN_IN_A = 5

14 CLEAN_IN_B = 6

15 CLEAN_PWM = 13

16

17 # setup Motors and PWM

18 left_motor = Motor(forward=LEFT_IN_A, backward=LEFT_IN_B)

19 right_motor = Motor(forward=RIGHT_IN_A, backward=RIGHT_IN_B)

20 clean_motor = Motor(forward=CLEAN_IN_A, backward=CLEAN_IN_B)

21

22 left_pwm = PWMOutputDevice(LEFT_PWM)

23 right_pwm = PWMOutputDevice(RIGHT_PWM)

24 clean_pwm = PWMOutputDevice(CLEAN_PWM)

25

26 #Setup Function

27 def setup():

28 stop_motors()

29 stop_cleaner()

30 print("[GPIOZERO] Motors initialized.")

31

32 # Motor Control

33 def _set_single_motor(motor, pwm_device, speed, label=""):

34 speed = max(-100, min(100, speed))

35 duty = abs(speed) / 100.0

36 direction = "Stopped"

37

38 if speed > 0:

 172

39 motor.forward()

40 pwm_device.value = duty

41 direction = "Forward"

42 elif speed < 0:

43 motor.backward()

44 pwm_device.value = duty

45 direction = "Reverse"

46 else:

47 motor.stop()

48 pwm_device.value = 0.0

49

50 if label:

51 print(f"[MOTOR] {label} => Speed: {abs(speed)}% | Direction:

{direction}")

52

53 def set_motor_speed(left_speed, right_speed):

54 _set_single_motor(left_motor, left_pwm, left_speed, label="Left

Motor")

55 _set_single_motor(right_motor, right_pwm, right_speed, label="Right

Motor")

56

57 def send_drive_command(cmd, speed):

58 if cmd == "forward":

59 set_motor_speed(speed, speed)

60 elif cmd == "backward":

61 set_motor_speed(-speed, -speed)

62 elif cmd == "left":

63 set_motor_speed(-speed, speed)

64 elif cmd == "right":

65 set_motor_speed(speed, -speed)

66 elif cmd == "forward_left":

67 set_motor_speed(speed // 2, speed)

68 elif cmd == "forward_right":

69 set_motor_speed(speed, speed // 2)

70 elif cmd == "backward_left":

71 set_motor_speed(-(speed // 2), -speed)

72 elif cmd == "backward_right":

73 set_motor_speed(-speed, -(speed // 2))

74 elif cmd == "stop":

75 stop_motors()

76 else:

77 print(f"[WARN] Unknown command: {cmd}")

78

79 def run_cleaner(speed):

80 _set_single_motor(clean_motor, clean_pwm, speed, label="Cleaner")

 173

81

82 def stop_motors():

83 left_motor.stop()

84 right_motor.stop()

85 left_pwm.value = 0.0

86 right_pwm.value = 0.0

87

88 def stop_cleaner():

89 clean_motor.stop()

90 clean_pwm.value = 0.0

91

92 def cleanup():

93 stop_motors()

94 stop_cleaner()

95 print("[GPIOZERO] Cleanup complete.")

96

97 #Test Block

98 if __name__ == "__main__":

99 stop_motors()

100

 174

Appendix H.5 – sharp_sensors.py

1 import board

2 import busio

3 import adafruit_ads1x15.ads1115 as ADS

4 from adafruit_ads1x15.analog_in import AnalogIn

5 from collections import deque

6 import time

7 from logger import *

8 import motors

9 import signal

10 import sys

11

12 # I2C setup

13 i2c = busio.I2C(board.SCL, board.SDA)

14 ads = ADS.ADS1115(i2c)

15 ads.gain = 1 # Set gain for 3.3V max input

16

17 # Channel setup

18 left_sensor = AnalogIn(ads, ADS.P0) # A0

19 right_sensor = AnalogIn(ads, ADS.P1) # A1

20

21 # Smoothing buffers

22 left_buffer = deque(maxlen=10)

23 right_buffer = deque(maxlen=10)

24

25 #Exponential Moving Average

26 left_ema = None

27 right_ema = None

28 alpha = 0.2

29

30 _last_triggered = 0

31 _obstacle_start_time = None

32

33 def voltage_to_distance(voltage):

34 if voltage <= 0.1:

35 return float('inf') #Out of range

36 return round(27.86 / (voltage - 0.1), 2)

37

38 def update_buffers():

39 global left_ema, right_ema

40 left_voltage = left_sensor.voltage

41 right_voltage = right_sensor.voltage

42

43 left_dist = voltage_to_distance(left_voltage)

 175

44 right_dist = voltage_to_distance(right_voltage)

45

46 left_buffer.append(left_dist)

47 right_buffer.append(right_dist)

48

49 left_ema = left_dist if left_ema is None else alpha * left_dist + (1 -

alpha) * left_ema

50 right_ema = right_dist if right_ema is None else alpha * right_dist +

(1 - alpha) * right_ema

51

52 def get_smoothed_distances():

53 update_buffers()

54 return round(left_ema, 2), round(right_ema, 2)

55

56 def is_obstacle_detected(threshold_cm=40.0):

57 left_dist, right_dist = get_smoothed_distances()

58 return left_dist < threshold_cm or right_dist < threshold_cm

59

60 def emergency_stop_check(threshold_cm=40.0, cooldown=7):

61 global _last_triggered, _obstacle_start_time

62

63 now = time.time()

64 if now - _last_triggered < cooldown:

65 return

66

67 if is_obstacle_detected(threshold_cm):

68 print("Obstacle detected! Pausing movement...")

69 log_warning("Obstacle detected! Pausing movement...")

70 motors.stop_motors()

71

72 if _obstacle_start_time is None:

73 _obstacle_start_time = now

74 elif now - _obstacle_start_time > 20:

75 print("Obstacle still present after 1 minute! Logging

alert...")

76 log_alert("Obstacle still present after 1 minute! Logging

alert...")

77

78 time.sleep(5)

79 _last_triggered = time.time()

80 else:

81 _obstacle_start_time = None # Reset timer if path is clear

82

83 # Graceful shutdown

84 def shutdown_handler(sig, frame):

 176

85 print("\nExiting. Cleaning up GPIO...")

86 motors.cleanup()

87 sys.exit(0)

88

89 signal.signal(signal.SIGINT, shutdown_handler)

90

91 # Test block

92 if __name__ == "__main__":

93 motors.setup()

94 print("Running Sharp Sensor Test...")

95 while True:

96 left, right = get_smoothed_distances()

97 print(f"Left: {left:.2f} cm | Right: {right:.2f} cm")

98

99 #log_event(f"Left: {left:.2f} cm | Right: {right:.2f} cm")

100

101 #emergency_stop_check()

102

103 time.sleep(0.2)

104

 177

Appendix H.6 – visual_module.py

This module interfaces with the HuskyLens AI vision sensor over I2C to detect and track

AprilTags. It provides smoothed position and size data for specified tag IDs using a rolling

buffer, improving stability in visual alignment tasks.

1 import sys

2 import os

3 import time

4 from collections import deque

5 from huskylib import HuskyLensLibrary

6 from logger import log_event

7

8 # Init HuskyLens in I2C mode

9 huskylens = HuskyLensLibrary("I2C", address=0x32)

10

11 #smoothing buffers for each tag ID

12 _buffers = {

13 1: deque(maxlen=5),

14 2: deque(maxlen=5),

15 3: deque(maxlen=5),

16 4: deque(maxlen=5)

17 }

18

19 def get_tag_data(tag_id):

20 """

21 Returns smoothed data for a given tag_id.

22 Output: dict with x, y, width, height or None if tag not found.

23 """

24 try:

25 huskylens.requestAll()

26 blocks = huskylens.blocks()

27 if not isinstance(blocks, list):

28 blocks = [blocks]

29

30 for block in blocks:

31 if hasattr(block, 'ID') and block.ID == tag_id:

32 data = {'x': block.x, 'y': block.y, 'w': block.width, 'h':

block.height}

33 _buffers[tag_id].append(data)

34 return _get_smoothed(tag_id)

35 except Exception as e:

36 print(f"[visual_module] Error: {e}")

37 return None

 178

38

39 def _get_smoothed(tag_id):

40 """

41 Returns the average of x, y, w, h from the buffer for the given tag.

42 """

43 buf = _buffers[tag_id]

44 if not buf:

45 return None

46 avg = {

47 'x': round(sum(d['x'] for d in buf) / len(buf), 2),

48 'y': round(sum(d['y'] for d in buf) / len(buf), 2),

49 'w': round(sum(d['w'] for d in buf) / len(buf), 2),

50 'h': round(sum(d['h'] for d in buf) / len(buf), 2)

51 }

52 return avg

53

54 # test

55 if __name__ == "__main__":

56 while True:

57 for tag_id in [1, 2, 3, 4]:

58 data = get_tag_data(tag_id)

59 if data:

60 print(f"Tag {tag_id}: X={data['x']} Y={data['y']}

W={data['w']} H={data['h']}")

61 log_event(f"Tag {tag_id}: X={data['x']} Y={data['y']}

W={data['w']} H={data['h']}")

62 time.sleep(0.5)

63
64

 179

Appendix H.7 – maestro_module.py

This module provides a lightweight interface for triggering subroutines on the Pololu Maestro

controller using serial communication. It abstracts the low-level protocol into a simple

trigger_sequence() function, allowing the system to initiate scripted hardware actions like servo

movements.

1 """

2 maestro_module.py

3

4 Custom Python interface for triggering Pololu Maestro script subroutines

via serial commands.

5

6 DISCLAIMER:

7 The hexadecimal command values used in this module are based on the

official Pololu Maestro

8 Serial Script Command Protocol as documented in the Pololu Maestro User's

Guide:

9

10 https://www.pololu.com/docs/pdf/0j40/maestro.pdf

11

12 All protocol definitions, device numbers, and command structures follow

the specifications

13 outlined by Pololu. This module simply provides a lightweight and project-

specific interface

14 to those commands and does not represent original protocol design.

15

16 Author: Pedro Cabrera

17 Date: 2025-07-11

18 """

19

20 import serial

21 import time

22

23 #CONFIGURATION

24 DEVICE_NUMBER = 0x0C # Default Maestro device number (0x0C = 12)

25 PORT = "/dev/ttyACM0" # Serial port where Maestro is connected

26 BAUDRATE = 9600 # Default USB baudrate for Maestro communication

27

28 def trigger_sequence(subroutine: int):

29 """

30 Triggers a script subroutine on the Maestro controller.

31

 180

32 Args:

33 subroutine (int): The subroutine number to run (0 = first defined

in Maestro script)

34 """

35 command = [0xAA, DEVICE_NUMBER, 0x27, subroutine]

36 try:

37 with serial.Serial(PORT, BAUDRATE, timeout=1) as maestro:

38 maestro.write(bytearray(command))

39 print(f"[Maestro] Triggered subroutine {subroutine}")

40 except Exception as e:

41 print(f"[Maestro] Error triggering subroutine {subroutine}: {e}")

42

43 #TEST BLOCK

44 if __name__ == "__main__":

45 print("Testing Maestro subroutine trigger...")

46 trigger_sequence(1)

47 print("40 sec delay initiated")

48 time.sleep(40)

49 print("sequence complete")

50

 181

Appendix H.8 – logger.py

This module handles system logging by writing timestamped messages to an SQLite database. It

supports three log levels, INFO, WARNING, and ALERT, and provides utility functions for

structured logging throughout the application.

1 import sqlite3

2 import datetime

3 import os

4

5 DB_FILE = os.path.join(os.path.dirname(__file__), 'event_log.db')

6

7 def log_event(message, level='INFO'):

8 timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")

9 conn = sqlite3.connect(DB_FILE)

10 c = conn.cursor()

11 c.execute("INSERT INTO logs (timestamp, level, message) VALUES (?, ?,

?)",

12 (timestamp, level, message))

13 conn.commit()

14 conn.close()

15 print(f"[{timestamp}] ({level}) {message}")

16

17 def log_warning(message):

18 log_event(message, level='WARNING')

19

20 def log_alert(message):

21 log_event(message, level='ALERT')

 182

Appendix H.9 – shared_state.py

This file provides a simple interface for setting and retrieving a global shared state dictionary

across multiple processes. It allows safe, centralized management of shared variables such as the

current operating mode.

1 shared = None

2

3 def set_shared(s):

4 global shared

5 shared = s

6

7 def get_shared():

8 return shared

9

10 def set_mode(new_mode):

11 if shared is not None:

12 shared["mode"] = new_mode

13
14

 183

Appendix H.10 – command_center.py

This module provides helper functions to manage shared commands, speed, mode, and tasks

through the shared memory dictionary. It serves as the central hub for setting and retrieving

control parameters used by different system components.

1 from shared_state import get_shared

2

3 def set_command(cmd):

4 get_shared()["command"] = cmd

5

6 def get_command():

7 return get_shared().get("command", None)

8

9 def clear_command():

10 get_shared()["command"] = None

11

12 def set_speed(speed):

13 get_shared()["speed"] = speed

14

15 def get_speed():

16 return get_shared().get("speed", 40)

17

18 def set_mode(mode):

19 get_shared()["mode"] = mode

20

21 def get_mode():

22 return get_shared().get("mode", "idle")

23

24 def set_task(task):

25 get_shared()["task"] = task

26

27 def get_task():

28 return get_shared().get("task", None)

29

30 def clear_task():

31 get_shared()["task"] = None

32

 184

Appendix H.11 – failsafe_manual.py

This script provides a keyboard-controlled fallback interface for manual operation using the

curses library. It allows real-time movement via WASD-style input and includes hotkeys to

trigger cleaning sequences and alignment routines, ensuring basic functionality even if the web

dashboard becomes unavailable.

1 import curses

2 import time

3 import motors

4 from maestro_module import trigger_sequence

5 from autonomy import alignment_sequence

6

7 #constants

8 SPEED = 40

9 ALIGN_TAG_1 = 2

10 ALIGN_TAG_2 = 3

11

12 # movement Commands Map

13 key_to_command = {

14 'w': 'forward',

15 'a': 'left',

16 's': 'backward',

17 'd': 'right',

18 'q': 'forward_left',

19 'e': 'forward_right',

20 'z': 'backward_left',

21 'x': 'backward_right'

22 }

23

24 def main(screen):

25 curses.cbreak()

26 screen.nodelay(True)

27 screen.keypad(True)

28

29 print(" Failsafe Manual Mode Active (Ctrl+C to exit)\n")

30 print(" Hold movement keys (WASDQEZX) to drive")

31 print(" Press 1 = Sequence 1 | 2 = Sequence 2")

32 print(" Press 3 = Align Panel 1 | 4 = Align Panel 2\n")

33

34 last_key = None

35 motors.setup()

36

 185

37 try:

38 while True:

39 key = screen.getch()

40 if key == -1:

41 if last_key:

42 motors.stop_motors()

43 print(f"[STOP] Released {last_key.upper()}")

44 last_key = None

45 time.sleep(0.01)

46 continue

47

48 try:

49 char = chr(key).lower()

50 except ValueError:

51 continue # ignore unprintable chars

52

53 # handle one-time actions

54 if char == '1':

55 print("[SEQ] Triggering Sequence 1")

56 motors.run_cleaner(60)

57 trigger_sequence(1)

58 print("[CLEANER] Running for 40 seconds...")

59 time.sleep(40)

60 motors.stop_cleaner()

61 print("[CLEANER] Stopped after sequence 1")

62

63 elif char == '2':

64 print("[SEQ] Triggering Sequence 2")

65 motors.run_cleaner(60)

66 trigger_sequence(2)

67 print("[CLEANER] Running for 60 seconds...")

68 time.sleep(60)

69 motors.stop_cleaner()

70 print("[CLEANER] Stopped after sequence 2")

71

72 elif char == '3':

73 print("[ALIGN] Aligning to Panel 1 (Tag 2)")

74 alignment_sequence(ALIGN_TAG_1)

75 elif char == '4':

76 print("[ALIGN] Aligning to Panel 2 (Tag 3)")

77 alignment_sequence(ALIGN_TAG_2)

78 elif char in key_to_command:

79 if char != last_key:

80 cmd = key_to_command[char]

81 motors.send_drive_command(cmd, SPEED)

 186

82 print(f"[MOVE] {char.upper()} → {cmd} at {SPEED}%")

83 last_key = char

84 else:

85 if last_key:

86 motors.stop_motors()

87 print(f"[STOP] Released {last_key.upper()}")

88 last_key = None

89

90 time.sleep(0.01)

91

92 except KeyboardInterrupt:

93 print("\n Exiting manual mode...")

94 motors.cleanup()

95 time.sleep(0.5)

96

97 if __name__ == "__main__":

98 curses.wrapper(main)

 187

Appendix H.12 – init_db.py

This script initializes the SQLite database used for logging system events. It creates a logs table

with fields for ID, timestamp, severity level, and message. This setup is required before any

logging can occur.

1 import sqlite3

2

3 def initialize_db():

4 conn = sqlite3.connect('event_log.db')

5 c = conn.cursor()

6 c.execute("""

7 CREATE TABLE IF NOT EXISTS logs (

8 id INTEGER PRIMARY KEY AUTOINCREMENT,

9 timestamp TEXT NOT NULL,

10 level TEXT NOT NULL,

11 message TEXT NOT NULL

12)

13 """)

14 conn.commit()

15 conn.close()

16

17 if __name__ == "__main__":

18 initialize_db()

19 print("Database initialized.")

 188

Appendix H.13 – app.py

This Flask application powers the web-based control dashboard. It provides routes for selecting

modes, sending commands, adjusting speed, viewing logs, and assigning tasks. It also interfaces

with shared memory to synchronize actions between the UI and the rover's core logic.

1 import os

2 import sys

3 sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),

'..')))

4 from command_center import set_command, set_speed, set_task, set_mode

5 from flask import Flask, render_template, request, redirect, url_for,

jsonify

6 import sqlite3

7

8 current_speed = 40

9 current_mode = "idle" # Options: "idle", "manual", "autonomous"

10

11 app = Flask(__name__)

12

13 BASE_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))

14 DB_PATH = os.path.join(BASE_DIR, 'event_log.db')

15

16 selected_task = None # Stores current panel selection

17

18 #Database Helper

19 def fetch_logs(level_filter=None, limit=50, offset=0):

20 conn = sqlite3.connect(DB_PATH)

21 c = conn.cursor()

22 if level_filter and level_filter != "ALL":

23 c.execute("SELECT * FROM logs WHERE level=? ORDER BY id DESC LIMIT

? OFFSET ?", (level_filter, limit, offset))

24 else:

25 c.execute("SELECT * FROM logs ORDER BY id DESC LIMIT ? OFFSET ?",

(limit, offset))

26 logs = c.fetchall()

27 conn.close()

28 return logs

29

30 #Routes

31

32 @app.route("/")

33 def home():

34 return render_template("home.html")

 189

35

36 @app.route("/mode")

37 def mode_selection():

38 return render_template("mode.html")

39

40 @app.route("/autonomous", methods=["GET", "POST"])

41 def autonomous():

42 global selected_task

43 if request.method == "POST":

44 selected_task = request.form["task"]

45 set_task(selected_task)

46 return redirect(url_for("autonomous"))

47 return render_template("autonomous.html", selected_task=selected_task)

48

49 @app.route("/manual")

50 def manual_control():

51 return render_template("manual.html")

52

53 @app.route("/logs")

54 def show_logs():

55 level = request.args.get("level", "ALL")

56 logs = fetch_logs(level)

57 return render_template("index.html", logs=logs, level=level)

58

59 @app.route("/logs/more")

60 def load_more_logs():

61 level = request.args.get("level", "ALL")

62 offset = int(request.args.get("offset", 50))

63 logs = fetch_logs(level, offset=50, limit=50)

64 return render_template("log_table.html", logs=logs)

65

66 @app.route("/manual/command", methods=["POST"])

67 def manual_command():

68 data = request.get_json()

69 cmd = data.get("command")

70 set_command(cmd)

71 print(f"[Manual CMD] Sent to buffer: {cmd}")

72 return jsonify({"status": "ok"}), 200

73

74 @app.route("/manual/speed", methods=["POST"])

75 def set_speed_handler():

76 data = request.get_json()

77 speed = int(data.get("speed", 40))

78 set_speed(speed)

79 print(f"[Speed] Updated in buffer: {speed}%")

 190

80 return jsonify({"status": "updated", "speed": speed}), 200

81

82 @app.route("/set_mode", methods=["POST"])

83 def set_mode_route():

84 data = request.get_json()

85 mode = data.get("mode")

86 if mode in ["manual", "autonomous"]:

87 set_mode(mode)

88 print(f"[Mode] Updated to {mode}")

89 return jsonify({"status": "ok", "mode": mode}), 200

90 return jsonify({"status": "error", "message": "Invalid mode"}), 400

91

92 @app.route("/get_mode", methods=["GET"])

93 def get_mode():

94 return jsonify({"mode": current_mode}), 200

95

96 #Flask run

97 if __name__ == "__main__":

98 app.run(host='0.0.0.0', port=5000, debug=False)

99

 191

Appendix H.14 – joystick.js

This JavaScript file enables joystick-based manual control on the web dashboard using the

NippleJS library. It translates joystick movements into directional commands and sends them to

the backend via POST requests for real-time rover control.

1 const joystickZone = document.getElementById('joystick');

2 const joystick = nipplejs.create({

3 zone: joystickZone,

4 mode: 'static',

5 position: { left: '50%', top: '50%' },

6 color: 'blue',

7 size: 150

8 });

9

10 let lastSent = 0;

11 const SEND_INTERVAL = 300;

12

13 joystick.on('move', (evt, data) => {

14 if (!data || !data.angle) return;

15

16 const now = Date.now();

17 if (now - lastSent < SEND_INTERVAL) return;

18 lastSent = now;

19

20 // Flip horizontally + rotate -90°

21 let angle = 450 - data.angle.degree;

22 if (angle >= 360) angle -= 360;

23

24 let command = 'stop';

25

26 if (angle >= 337.5 || angle < 22.5) {

27 command = 'forward';

28 } else if (angle >= 22.5 && angle < 67.5) {

29 command = 'forward_right';

30 } else if (angle >= 67.5 && angle < 112.5) {

31 command = 'right';

32 } else if (angle >= 112.5 && angle < 157.5) {

33 command = 'backward_right';

34 } else if (angle >= 157.5 && angle < 202.5) {

35 command = 'backward';

36 } else if (angle >= 202.5 && angle < 247.5) {

37 command = 'backward_left';

38 } else if (angle >= 247.5 && angle < 292.5) {

 192

39 command = 'left';

40 } else if (angle >= 292.5 && angle < 337.5) {

41 command = 'forward_left';

42 }

43

44 sendJoystickCommand(command);

45 });

46

47 joystick.on('end', () => {

48 sendJoystickCommand('stop');

49 });

50

51 function sendJoystickCommand(cmd) {

52 fetch('/manual/command', {

53 method: 'POST',

54 headers: { 'Content-Type': 'application/json' },

55 body: JSON.stringify({ command: cmd })

56 });

57 }

58

 193

Appendix H.15 – home.html

This is the landing page for the Astraeus web interface. It provides users with navigation options

to select between autonomous or manual operation modes and to view system logs. The design is

clean and responsive for ease of use on desktop or mobile devices.

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="UTF-8">

5 <title>Astraeus Home</title>

6 <style>

7 body {

8 margin: 0;

9 font-family: 'Segoe UI', sans-serif;

10 background-color: #f4f4f4;

11 }

12

13 header {

14 background-color: black;

15 text-align: center;

16 padding: 1rem;

17 }

18

19 header img {

20 max-width: 100%;

21 height: auto;

22 }

23

24 .container {

25 text-align: center;

26 padding: 2rem;

27 }

28

29 h1 {

30 font-size: 2.5rem;

31 color: #333;

32 }

33

34 .button-container {

35 margin-top: 2rem;

36 }

37

38 .main-btn {

 194

39 padding: 1rem 2rem;

40 margin: 1rem;

41 text-decoration: none;

42 color: white;

43 font-size: 1.2rem;

44 font-weight: bold;

45 border-radius: 8px;

46 display: inline-block;

47 transition: background-color 0.2s ease;

48 }

49

50 .main-btn:hover {

51 opacity: 0.9;

52 }

53

54 .mode-btn {

55 background-color: #007bff;

56 }

57

58 .logs-btn {

59 background-color: #28a745;

60 }

61 </style>

62 </head>

63 <body>

64

65 <header>

66 <img src="{{ url_for('static', filename='astraeus_logo.png') }}"

alt="ASTRAEUS">

67 </header>

68

69 <div class="container">

70 <h1>Welcome to Astraeus</h1>

71 <p>Select a mode or view logs from the rover system.</p>

72

73 <div class="button-container">

74 <a href="{{ url_for('mode_selection') }}" class="main-btn mode-

btn">🧭 Mode Selection

75 📜

View Logs

76 </div>

77 </div>

78 </body>

79 </html>

 195

Appendix H.16 – index.html

This page displays system logs from the rover in a filterable and scrollable format. Users can

view logs by severity (ALL, WARNING, ALERT), load older entries, and see real-time updates

with visual indicators when new messages arrive. The interface is styled for clarity and ease of

use.

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="UTF-8">

5 <title>Logger</title>

6 <style>

7 .log-btn {

8 display: inline-block;

9 margin: 0 10px;

10 padding: 0.5em 1.2em;

11 border-radius: 8px;

12 text-decoration: none;

13 font-weight: bold;

14 font-family: 'Segoe UI', sans-serif;

15 font-size: 14px;

16 transition: all 0.2s ease;

17 background-color: #e0e0e0;

18 color: #000;

19 box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);

20 }

21

22 .log-btn:hover {

23 background-color: #ccc;

24 }

25

26 .log-btn.active {

27 border: 2px solid #007bff;

28 background-color: #d9edff;

29 color: #007bff;

30 }

31

32 .log-btn.warning {

33 background-color: #fff2c2;

34 color: #b8860b;

35 }

36

37 .log-btn.warning.active {

38 background-color: #ffeb99;

 196

39 border-color: #b8860b;

40 }

41

42 .log-btn.alert {

43 background-color: #ffcccc;

44 color: #b22222;

45 }

46

47 .log-btn.alert.active {

48 background-color: #ff9999;

49 border-color: #b22222;

50 }

51

52 .log-btn.neutral {

53 background-color: #eee;

54 color: #333;

55 }

56

57 .log-btn.neutral:hover {

58 background-color: #ddd;

59 }

60 </style>

61 </head>

62 <body>

63 <header style="background-color:black; text-align:center;

padding:1rem;">

64 <img src="{{ url_for('static', filename='astraeus_logo.png') }}"

alt="ASTRAEUS" style="max-width:100%; height:auto;">

65 </header>

66

67 <div class="container">

68 <div class="filter-tabs" style="text-align:center; margin: 1.5rem

0;">

69

Home

70 <a href="{{ url_for('show_logs', level='ALL') }}" class="log-

btn {{ 'active' if level == 'ALL' else '' }}">ALL

71 <a href="{{ url_for('show_logs', level='WARNING') }}"

class="log-btn warning {{ 'active' if level == 'WARNING' else ''

}}">WARNING

72 <a href="{{ url_for('show_logs', level='ALERT') }}"

class="log-btn alert {{ 'active' if level == 'ALERT' else '' }}">ALERT

73 </div>

74

75 <div id="logTable">

 197

76 {% include 'log_table.html' %}

77 </div>

78

79 <button id="loadMoreBtn" style="

80 display: block;

81 margin: 2rem auto;

82 padding: 0.75rem 1.5rem;

83 background: #333;

84 color: white;

85 border: none;

86 border-radius: 5px;

87 font-weight: bold;

88 cursor: pointer;

89 ">

90 Load Older Logs

91 </button>

92

93 <div id="newMessages" onclick="scrollToTop()" style="

94 position: fixed;

95 bottom: 0;

96 left: 50%;

97 transform: translateX(-50%);

98 background: #007bff;

99 color: white;

100 padding: 0.75em 1.5em;

101 border-radius: 1rem 1rem 0 0;

102 display: none;

103 z-index: 999;

104 cursor: pointer;

105 font-weight: bold;

106 ">

107 New logs available — click to return

108 </div>

109 </div>

110

111 <script>

112 const logTable = document.getElementById('logTable');

113 const newMessages = document.getElementById('newMessages');

114 const level = "{{ level }}";

115 let autoScroll = true;

116 let offset = 50;

117

118 function scrollToTop() {

119 window.scrollTo({ top: 0, behavior: 'smooth' });

120 autoScroll = true;

 198

121 newMessages.style.display = 'none';

122 }

123

124 window.addEventListener('scroll', () => {

125 autoScroll = window.scrollY < 100;

126 });

127

128 function updateLogs() {

129 if (!autoScroll) return;

130

131 fetch("/logs" + (level !== 'ALL' ? `?level=${level}` : ''))

132 .then(res => res.text())

133 .then(html => {

134 const newTable = document.createElement('div');

135 newTable.innerHTML = html;

136 const newContent = newTable.querySelector('table

tbody').innerHTML;

137

138 const currentContent = logTable.querySelector('table

tbody').innerHTML;

139 if (newContent !== currentContent) {

140 logTable.querySelector('table tbody').innerHTML =

newContent;

141

142 if (autoScroll) {

143 window.scrollTo({ top: 0, behavior: 'smooth'

});

144 newMessages.style.display = 'none';

145 } else {

146 newMessages.style.display = 'block';

147 }

148 }

149 })

150 .catch(err => {

151 console.error("Error loading logs:", err);

152 });

153 }

154

155 document.getElementById("loadMoreBtn").addEventListener("click",

() => {

156 autoScroll = false;

157

158 fetch(`/logs/more?level=${level}&offset=${offset}`)

159 .then(res => res.text())

160 .then(html => {

 199

161 const newTable = document.createElement('div');

162 newTable.innerHTML = html;

163 const newRows =

newTable.querySelector('tbody').innerHTML;

164 logTable.querySelector('tbody').innerHTML += newRows;

165 offset += 50;

166 });

167 });

168

169 setInterval(updateLogs, 5000);

170 </script>

171 </body>

172 </html>

 200

Appendix H.17 – autonomous.html

This page allows users to initiate autonomous cleaning tasks by selecting Panel 1, Panel 2, or

both. It displays the current selection and posts the task back to the server. The interface is styled

for clarity and user accessibility on various devices.

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="UTF-8">

5 <title>Select Panel</title>

6 <style>

7 body {

8 margin: 0;

9 font-family: 'Segoe UI', sans-serif;

10 background-color: #f4f4f4;

11 }

12

13 header {

14 background-color: black;

15 text-align: center;

16 padding: 1rem;

17 }

18

19 header img {

20 max-width: 100%;

21 height: auto;

22 }

23

24 .content {

25 max-width: 500px;

26 margin: 3rem auto;

27 background: white;

28 border-radius: 12px;

29 padding: 2rem;

30 box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);

31 text-align: center;

32 }

33

34 h2 {

35 margin-bottom: 1rem;

36 font-size: 1.8rem;

37 }

38

 201

39 form button {

40 display: block;

41 width: 100%;

42 padding: 1rem;

43 margin: 0.5rem 0;

44 font-size: 1rem;

45 font-weight: bold;

46 border: none;

47 border-radius: 8px;

48 cursor: pointer;

49 transition: all 0.2s ease;

50 }

51

52 .panel1 {

53 background-color: #007bff;

54 color: white;

55 }

56

57 .panel1:hover {

58 background-color: #0056b3;

59 }

60

61 .panel2 {

62 background-color: #28a745;

63 color: white;

64 }

65

66 .panel2:hover {

67 background-color: #1e7e34;

68 }

69

70 .all {

71 background-color: #ff9900;

72 color: white;

73 }

74

75 .all:hover {

76 background-color: #cc7a00;

77 }

78

79 .current-task {

80 margin-top: 1rem;

81 color: #555;

82 font-style: italic;

83 }

 202

84

85 .home-link {

86 margin-top: 2rem;

87 display: inline-block;

88 color: #333;

89 text-decoration: none;

90 font-weight: bold;

91 }

92

93 .home-link:hover {

94 text-decoration: underline;

95 }

96 </style>

97 </head>

98 <body>

99

100 <header>

101 <img src="{{ url_for('static', filename='astraeus_logo.png') }}"

alt="ASTRAEUS">

102 </header>

103

104 <div class="content">

105 <h2>Select Cleaning Mode</h2>

106 <form method="POST">

107 <button class="panel1" name="task" value="panel1">🧽 Clean Panel

1</button>

108 <button class="panel2" name="task" value="panel2">🧼 Clean Panel

2</button>

109 <button class="all" name="task" value="all">🧹 Clean Both

Panels</button>

110 </form>

111

112 {% if selected_task %}

113 <div class="current-task">

114 Selected Task: {{ selected_task|capitalize }}

115 </div>

116 {% endif %}

117

118 ← Back to Home

119 </div>

120

121 </body>

122 </html>

 203

Appendix H.18 – log_table.html

This HTML partial renders a styled table for displaying log entries, including ID, timestamp,

severity level, and message content. It uses conditional formatting to highlight WARNING and

ALERT levels, and is dynamically loaded into the logs dashboard.

1 <div style="display: flex; justify-content: center;">

2 <table style="

3 width: 90%;

4 max-width: 1000px;

5 border-collapse: collapse;

6 margin: 1rem auto;

7 font-family: 'Segoe UI', sans-serif;

8 font-size: 14px;

9 background: white;

10 border-radius: 8px;

11 overflow: hidden;

12 box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);

13 text-align: center;

14 ">

15 <thead style="background-color: #f9f9f9;">

16 <tr>

17 <th style="padding: 12px; border-bottom: 1px solid #ccc;

width: 5%;">#</th>

18 <th style="padding: 12px; border-bottom: 1px solid #ccc;

width: 20%;">Timestamp</th>

19 <th style="padding: 12px; border-bottom: 1px solid #ccc;

width: 15%;">Level</th>

20 <th style="padding: 12px; border-bottom: 1px solid #ccc; text-

align: left;">Message</th>

21 </tr>

22 </thead>

23 <tbody>

24 {% for entry in logs %}

25 <tr style="background-color:

26 {% if entry[2] == 'WARNING' %}#fff8dc

27 {% elif entry[2] == 'ALERT' %}#ffe6e6

28 {% else %}#ffffff{% endif %};

29 border-bottom: 1px solid #eee;">

30 <td style="padding: 10px;">{{ entry[0] }}</td>

31 <td style="padding: 10px;">{{ entry[1] }}</td>

32 <td style="padding: 10px; font-weight: bold;">{{ entry[2]

}}</td>

 204

33 <td style="padding: 10px; text-align: left;">{{ entry[3]

}}</td>

34 </tr>

35 {% endfor %}

36 </tbody>

37 </table>

38 </div>

 205

Appendix H.19 – manual.html

This page provides an interface for manual rover control via a virtual joystick and control

buttons. Users can initiate movement, trigger cleaning sequences, align with panels, and adjust

speed using a slider. It communicates with the backend through AJAX to update rover

commands in real time.

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="UTF-8">

5 <title>Manual Control</title>

6 <link rel="stylesheet" href="{{ url_for('static',

filename='style.css') }}">

7 <script src="{{ url_for('static', filename='js/nipplejs.min.js')

}}"></script> <!-- Local nipplejs -->

8 <script defer src="{{ url_for('static', filename='js/joystick.js')

}}"></script> <!-- Custom joystick logic -->

9 <style>

10 body {

11 margin: 0;

12 font-family: 'Segoe UI', sans-serif;

13 background-color: #f4f4f4;

14 }

15

16 header {

17 background-color: black;

18 text-align: center;

19 padding: 1rem;

20 }

21

22 header img {

23 max-width: 100%;

24 height: auto;

25 }

26

27 .container {

28 max-width: 600px;

29 margin: 2rem auto;

30 text-align: center;

31 background: white;

32 padding: 2rem;

33 border-radius: 12px;

 206

34 box-shadow: 0 4px 15px rgba(0,0,0,0.1);

35 }

36

37 h2 {

38 margin-bottom: 1rem;

39 }

40

41 .control-btn {

42 margin: 0.5rem;

43 padding: 0.75rem 1.5rem;

44 font-size: 1rem;

45 font-weight: bold;

46 border: none;

47 border-radius: 8px;

48 cursor: pointer;

49 color: white;

50 background: #007bff;

51 }

52

53 .control-btn:hover {

54 background: #0056b3;

55 }

56

57 .slider {

58 margin-top: 2rem;

59 }

60

61 input[type="range"] {

62 width: 100%;

63 }

64

65 .back-link {

66 display: block;

67 margin-top: 2rem;

68 text-decoration: none;

69 color: #555;

70 font-weight: bold;

71 }

72

73 #joystick {

74 margin: 1rem auto;

75 width: 200px;

76 height: 200px;

77 background: #eee;

78 border-radius: 50%;

 207

79 position: relative;

80 }

81 </style>

82 </head>

83 <body>

84

85 <header>

86 <img src="{{ url_for('static', filename='astraeus_logo.png') }}"

alt="ASTRAEUS">

87 </header>

88

89 <div class="container">

90 <h2>Manual Control</h2>

91

92 <div id="joystick"></div>

93

94 <div>

95 <button class="control-btn" onclick="sendCommand('align1')">📍

Align Panel 1</button>

96 <button class="control-btn" onclick="sendCommand('align2')">📍

Align Panel 2</button>

97 <button class="control-btn" onclick="sendCommand('seq1')">▶️

Sequence 1</button>

98 <button class="control-btn" onclick="sendCommand('seq2')">▶️

Sequence 2</button>

99 </div>

100

101 <div class="slider">

102 <label for="speed">Speed:</label>

103 <input type="range" id="speed" min="10" max="100" value="40"

onchange="updateSpeed(this.value)">

104 <div id="speedDisplay">40%</div>

105 </div>

106

107 ← Back to

Mode Selection

108 </div>

109

110 <script>

111 function sendCommand(cmd) {

112 fetch('/manual/command', {

113 method: 'POST',

114 headers: { 'Content-Type': 'application/json' },

115 body: JSON.stringify({ command: cmd })

116 });

 208

117 }

118

119 function updateSpeed(value) {

120 document.getElementById('speedDisplay').innerText = value + '%';

121 fetch('/manual/speed', {

122 method: 'POST',

123 headers: { 'Content-Type': 'application/json' },

124 body: JSON.stringify({ speed: value })

125 });

126 }

127 </script>

128

129 </body>

130 </html>

131

 209

Appendix H.20 – mode.html

This page allows users to select the rover's operating mode, Autonomous or Manual. Each option

triggers a backend update to change the system mode and navigates to the corresponding control

interface. The design ensures quick and intuitive mode switching with visual feedback.

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="UTF-8">

5 <title>Mode Selection</title>

6 <style>

7 body {

8 margin: 0;

9 font-family: 'Segoe UI', sans-serif;

10 background-color: #f4f4f4;

11 }

12

13 header {

14 background-color: black;

15 text-align: center;

16 padding: 1rem;

17 }

18

19 header img {

20 max-width: 100%;

21 height: auto;

22 }

23

24 .content {

25 text-align: center;

26 padding: 3rem 1rem;

27 }

28

29 h1 {

30 font-size: 2rem;

31 margin-bottom: 1rem;

32 }

33

34 .mode-btn {

35 background: #007bff;

36 color: white;

37 padding: 1rem 2rem;

38 margin: 1rem;

 210

39 font-size: 1.1rem;

40 font-weight: bold;

41 border: none;

42 border-radius: 8px;

43 text-decoration: none;

44 box-shadow: 0 4px 8px rgba(0,0,0,0.1);

45 display: inline-block;

46 transition: all 0.2s ease;

47 }

48

49 .mode-btn:hover {

50 background: #0056b3;

51 transform: translateY(-2px);

52 }

53

54 .manual-btn {

55 background: #28a745;

56 }

57

58 .manual-btn:hover {

59 background: #1e7e34;

60 }

61

62 .back-btn {

63 background: #333;

64 }

65

66 .back-btn:hover {

67 background: #111;

68 }

69 </style>

70 </head>

71 <body>

72

73 <header>

74 <img src="{{ url_for('static', filename='astraeus_logo.png') }}"

alt="ASTRAEUS">

75 </header>

76

77 <div class="content">

78 <h1>Select Operation Mode</h1>

79 <a href="{{ url_for('autonomous') }}" class="mode-btn"

onclick="setMode('autonomous')">🧭 Autonomous

80 <a href="{{ url_for('manual_control') }}" class="mode-btn manual-btn"

onclick="setMode('manual')">🎮 Manual

 211

81 ← Back to

Home

82 </div>

83 <script>

84 function setMode(mode) {

85 fetch('/set_mode', {

86 method: 'POST',

87 headers: { 'Content-Type': 'application/json' },

88 body: JSON.stringify({ mode: mode })

89 });

90 }

91 </script>

92 </body>

93 </html>

 212

Appendix I – IEEE Code of Ethics

The following clauses from the IEEE Code of Ethics were directly applied throughout Project Astraeus.

1. To hold paramount the safety, health, and welfare of the public, to strive to comply with ethical design

and sustainable development practices, and to disclose promptly factors that might endanger the public or

the environment.

3. To be honest and realistic in stating claims or estimates based on available data.

5. To improve the understanding of technology, its appropriate application, and potential consequences.

6. To maintain and improve our technical competence and to undertake technological tasks for others only

if qualified by training or experience, or after full disclosure of pertinent limitations.

7. To seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, and to

credit properly the contributions of others.

9. To avoid injuring others, their property, reputation, or employment by false or malicious action.

 213

Group Members

Mark A. Figueroa

• A.A. Engineering

• Pursuing a B.S In Electrical and

Computer Engineering Technology

(Spring 2026)

• Currently working within the

BECET Program as a TA & serving

as the Student Chair of the IEEE

Student Branch at Valencia College

Pedro J. Cabrera

• A.A. Engineering

• Pursuing a B.S In Electrical and

Computer Engineering Technology

(Fall 2025)

• Currently working within the

BECET Program as a TA &

Industrial Cybersecurity Engineer at

Siemens Energy.

